

Protecting and improving the nation's health

Cardiovascular Disease Prevention

Return on Investment Tool: Final Report

About Public Health England

Public Health England exists to protect and improve the nation's health and wellbeing, and reduce health inequalities. We do this through world-leading science, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support.

Public Health England Wellington House 133-155 Waterloo Road London SE1 8UG

www.gov.uk/phe
Twitter: @PHE_uk

Tel: 020 7654 8000

Facebook: www.facebook.com/PublicHealthEngland

Prepared by: Chloe Thomas, Hazel Squires, Michael Gillett, Edward Goka, Joanna Leaviss, Helen Buckley-Woods, Mark Clowes, Gillian Brenner, David Bagguley & Alan Brennan. School of Health and Related Research, University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA

© Crown copyright 2018

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

Published September 2018 PHE publications gateway number: 2018532

PHE supports the UN Sustainable Development Goals

Contents

Executive summary	4
Acronyms used in this document	6
Introduction	7
Evidence reviews	10
Modelling and tool development	13
Exemplar analyses	19
Further information	37
References	38

Executive summary

Cardiovascular disease (CVD) prevention is a major public health priority in England. The NHS RightCare Optimal Pathway has highlighted 6 CVD high-risk conditions that are currently under-diagnosed and insufficiently managed despite a range of available interventions, and therefore represent targets for improvement: hypertension; atrial fibrillation (AF); high cholesterol/high CVD risk including familial hypercholesterolemia (FH); diabetes (type 1 and type 2); non-diabetic hyperglycaemia; and chronic kidney disease (CKD). Public Health England (PHE) identified a need for an integrated single platform return on investment (ROI) CVD prevention tool to support NHS and public health decision makers at both national and local level, based on best available current evidence around CVD prevention in people with the 6 identified high-risk conditions.

Literature reviews were carried out to identify evidence for effectiveness and costeffectiveness of interventions that improve the detection and management of the CVD high-risk conditions. Interventions were chosen for inclusion in the tool if they were recommended by NICE for individuals without pre-existing CVD and if there was high quality and recent effectiveness evidence available. Selected detection interventions included NHS Health Checks, annual review in people with a pre-existing condition, cascade testing for FH and opportunistic detection. Selected management interventions included pharmacological interventions (antihypertensives, lipid modification therapy, anticoagulants and blood glucose lowering), lifestyle interventions (NHS DPP, Diabetes structured education, weight management, smoking cessation, nutritional advice for CKD) and interventions that improve adherence to pharmacological interventions (blood pressure self-monitoring, insulin pump and medicines use review). A series of additional reviews were carried out to inform other intervention parameters including costs and duration of effect. Local and national data sources were identified to provide information about current care such as diagnosed prevalence of high-risk conditions and current usage of interventions.

The tool was developed with input from a tool user group who provided information about local priorities for CVD and their requirements for a CVD prevention ROI tool. The tool was based on the pre-existing School for Public Health Research Diabetes Prevention Model, an individual patient simulation model with baseline population characteristics taken from the Health Survey for England 2014. The model was adapted to enable the high-risk conditions and chosen interventions to be included. The tool design enables users to see the potential benefits of either improving detection and/or management of 1 or more high-risk conditions, or of improving the usage of 1 or more of the key interventions for people at risk of CVD. The tool is designed to include both the direct costs and benefits of implementing chosen scenarios and the indirect consequences, for example the increased cost of management that will occur as a response to increased diagnosis of high risk conditions.

This document reports the results of a series of exemplar analyses in which detection/management of each condition or usage of each intervention are optimised in turn and compared. These analyses help give some indication to tool users about which interventions or detection and management strategies are likely to provide the most benefit. The results indicate that optimising detection and management of people with QRISK ≥ 10% results in the highest short-term benefits, whereas detection and management of diabetes provides the most benefit in the long-term. Of individual interventions, statins give the most benefits in the short-term and anti-hypertensives or annual review in the long-term. Most lifestyle interventions are not cost-saving within the time horizon of the model, but this does not rule them out from being cost-saving over longer time horizons. Uncertainty analysis is not included in the tool, but it is important to note that there will be some uncertainty around estimates.

Acronyms used in this document

ACEI/ARB: Angiotensin Converting Enzyme Inhibitor/Angiotensin II Receptor Blockers

ACR: Albumin to Creatinine Ratio (measure of kidney function)

AF: Atrial Fibrillation BMI: Body Mass Index

CCG: Clinical Commissioning Group

CKD: Chronic Kidney Disease CVD: Cardiovascular Disease

DPP: NHS Diabetes Prevention Programme

FH: Familial Hypercholesterolaemia HSE: Health Survey for England HTA: Health Technology Assessment

JBS3: Joint British Societies for the prevention of cardiovascular disease

MI: Myocardial Infarction

NCVIN: National Cardiovascular Intelligence Network

NDH: Non-Diabetic Hyperglycaemia

NICE: National Institute for Health and Care Excellence

NMB: Net Monetary Benefit

ONS: Office of National Statistics PDF: Portable Document Format PHE: Public Health England

QALY: Quality Adjusted Life Year

QOF: Quality and Outcomes Framework

QRISK: QResearch Cardiovascular Risk Calculator (score gives 10 year CVD risk)

ROI: Return on Investment SBP: Systolic Blood Pressure

SPHR: School for Public Health Research UKPDS: UK Prospective Diabetes Study

Introduction

Cardiovascular disease (CVD) prevention is a major public health priority in England. Currently there are over 2.6 million people in the UK on the Coronary Heart Disease Register and 1.2 million on the Stroke or Transient Ischaemic Attacks Register¹. CVD mortality varies widely throughout the UK by deprivation, by gender and by regional area, e.g. the highest age-standardised CVD death rates in England are in the North West (320/100,000), compared to only 269/100,000 in the South West². According to a recent European study it is estimated that CVD cost the UK economy €26 billion in 2015 of which €12 billion (46%) came from direct health care costs³.

Recent declines in mortality mean that more people are living for longer with long-term conditions including CVD and other conditions that increase the risk of CVD. Despite the recent improvements, many CVD cases could be prevented through healthier lifestyles and through better risk factor detection and management⁴. Whilst some risk factors such as smoking have reduced in the population; levels of obesity and diabetes are increasing, and other risk factors such as hypertension and atrial fibrillation remain undiagnosed or poorly managed in many individuals.

The NHS RightCare Optimal Pathway⁵ highlighted 6 CVD high risk conditions that are currently underdiagnosed and insufficiently managed despite a range of available interventions, and therefore represent targets for improvement (Figure 1):

- high blood pressure;
- atrial fibrillation (AF);
- high cholesterol/high CVD risk including Familial Hypercholesterolemia (FH);
- Diabetes (Type 2 and Type 1);
- non-diabetic hyperglycaemia;
- chronic kidney disease (CKD).

PHE identified that whilst a number of tools pre-existed for assessing return on investment (ROI) for CVD prevention, these used a variety of different evidence sources and assumptions and therefore there was no common platform for the assessment of ROI across different risk conditions and different interventions. There was therefore a need for an integrated, single platform ROI tool to support NHS and public health decision makers at both national and local level.

PHE commissioned a CVD prevention ROI tool focussing on the 6 high risk conditions from the University of Sheffield. A consistent and up to date evidence review was also required to identify the best quality evidence about the effectiveness and cost-effectiveness of interventions aimed at detecting and managing each of the risk

conditions. The University of Sheffield proposed to develop the ROI tool based on a modification of an existing type 2 diabetes prevention model (The School for Public Health Research (SPHR) Diabetes Prevention Model⁶⁻⁸), which has been previously used as the basis of a PHE tool to model the ROI of the NHS Diabetes Prevention Programme (NHS DPP)⁹.

Figure 1: NHS RightCare Cardiovascular Disease Prevention Optimal Pathway⁵

Note that data used to inform this may differ from that used in the CVD Prevention ROI Tool, so results may differ.

Cardiovascular Disease Prevention: Risk Detection and Management in Primary Care

The	Cross Cutting: 1. NHS Health Check - systematic detection of high BP, AF, NDH, T2DM, CKD, high cholesterol, CVD risk 2. System level action to support guideline implementation by clinicians 3. Support for patient activation, individual behaviour change and self management							
Interventions	High BP detection and treatment	detection and anticoagulation risk asse		Type 2 Diabetes preventive intervention	<u>Diabetes</u> detection and treatment	CKD detection and management		
The Opportunities	5 million un-diagnosed, 40% poorly controlled	30% undiagnosed. Over half untreated or poorly controlled	85% of FH undlagnosed. Most peopleat high CVD risk don't receive statins	5 million with NDH. Most do not receive intervention	940k undiagnosed. 40% do not receive all 8 care processes	1.2m undiagnosed. Many have poor BP & proteinuria control		
The Evidence	BP lowering prevents strokes and heart attacks	Anticoagulation prevents 2/3 of strokes in AF	Behaviour change and statins reduce lifetime risk of CVD	Intensive behaviour change (eg NHS DPP) reduces T2DM risk 30-60%	Control of BP, HbA1c and lipids improves CVD outcomes	Control of BP, CVD riskand proteinuria improves outcomes		
The Risk Condition	Blood Pressure	Atrial Fibrillation	High CVD risk & Familial H/ cholesterol	Non Diabetic Hyperglycemia ('pre-diabetes')	Type 1 and 2 Diabetes	Chronic Kidney Disease		

Detection and 2°/3° Prevention

The Outcomes

50% of all strokes & heart attacks. plus CKD &

5-fold increase in strokes, often of greater severity

Marked increase in premature death and disability from CVD

Marked increase in Type 2 DM and CVD at an earlier

Marked increase in heart attack. stroke, kidney, eye, nerve damage Increase in CVD, acute kidney injury & renal réplacement

Evidence reviews

Consultation with the steering group (a project oversight group of internal and external stakeholders. See technical appendix for further information) led to the agreement that interventions that are currently recommended by NICE for detection or management of the 6 high risk conditions should be prioritised for inclusion in the tool. Whilst of potential interest, the tool would not include policy and structural interventions that improve uptake of and adherence to current NICE guidelines, or novel interventions (not currently NICE recommended) for detection or management of high risk conditions.

Selection of interventions for review was therefore guided by recommendations within the relevant NICE guideline documents for the 6 high risk conditions as follows:

- CG127: Hypertension (last updated 2016)¹⁰
- CG180: Atrial fibrillation (last updated 2014)¹¹
- CG71: Familial Hypercholesterolaemia (last updated 2017)¹²
- CG181: CVD Risk Assessment and Lipid Modification (last updated 2016)¹³
- NG17: Type 1 Diabetes (last updated 2016)¹⁴
- NG28: Type 2 Diabetes (last updated 2017)¹⁵
- PH38: Type 2 Diabetes Prevention (includes recommendations for non-diabetic hyperglycaemia; last updated 2017)¹⁶
- CG182: Chronic kidney disease (last updated 2015)¹⁷

Selected management interventions were limited to those that specifically contributed to prevention of CVD rather than just control of symptoms; and excluded interventions that were aimed specifically at individuals with pre-existing CVD (e.g. previous stroke or MI), or relevant to only a very small number of individuals with serious disease.

Following selection of intervention topics, a review question was formulated for each included topic, which enabled identification of effectiveness data for each intervention individually or in combination with other included interventions, relating to each relevant high risk group. As an initial step, any existing evidence relating to the effectiveness of recommended interventions was extracted from NICE guideline documentation. If such evidence was relevant to the review question, had been reviewed within the last year and contained outcomes of relevance to the tool then no further reviewing was required. If further evidence was required, searches were designed to identify recent evidence relating to effectiveness of the intervention. Searches were initially aimed at identifying relevant systematic reviews, but if none were found, a second set of searches was carried out to identify relevant randomised controlled trials. A review protocol was designed to enable rapid reviewing for each search topic. In most cases multiple potentially useful studies were identified. Selection of studies for inclusion in the tool was based on an assessment of study quality, relevance to the topic question

and input from the steering group. A full description of reviewing methodology and review reports for each topic are provided in sections 2 & 3 respectively of the accompanying technical appendix.

Inclusion of interventions within the tool was informed through effectiveness evidence and steering group input. The following interventions are included:

- lipid Modification Therapy (Atorvastatin 20 mg)
- anti-hypertensives (Combination Therapy for Hypertension and ACEi/ARB therapy for CKD)
- anticoagulants for AF
- blood glucose lowering medication for Type 2 Diabetes
- NHS Diabetes Prevention Programme
- structured education programmes for Diabetes
- weight management
- smoking cessation
- individualised nutritional advice for CKD
- continuous subcutaneous insulin infusion (insulin pump) for Type 1 Diabetes
- blood pressure self-monitoring for management of hypertension
- Pharmacist Medicines Use Review
- NHS Health Checks
- · cascade testing for FH
- opportunistic detection (variety of methods)
- annual review for detection and management

In addition to these interventions, the tool also includes a user-defined intervention on the recommendation of the steering group. This enables users to input details of any other management intervention that they wish to include, providing that they can supply information about its effectiveness (relative risk for CVD), cost, duration of effect and the eligible high risk group.

For several interventions it was not possible to identify relevant effectiveness data. In particular, there were several lifestyle interventions for which behavioural evidence was identified, but no direct evidence for CVD prevention or metabolic change could be found:

- exercise referral
- screening and brief intervention for alcohol
- brief advice for diet and physical activity
- individualised nutritional advice for FH

These were not included in the tool as the model framework did not allow behavioural evidence to be incorporated. However, it is important to note that their exclusion from

the tool does not mean that such interventions should be discontinued; and they may be included in future versions of the tool if direct evidence of CVD benefit becomes available. Evidence gaps were also identified relating to intervention combinations, for which little specific effectiveness evidence was found. In order to enable modelling of intervention combinations in the tool, it was therefore assumed that intervention effectiveness estimates were independent (i.e. that there were no interactions between interventions that led to either an increase or a reduction in the effectiveness of 1 intervention if a second was also applied).

A series of other intervention parameters were also reviewed including cost-effectiveness, intervention costs, and duration of intervention effect. In order to populate the tool input parameters, it was also necessary to find data to inform current levels of detection and management of high risk conditions and usage of interventions (usage defined as the proportion of eligible people undergoing an intervention, comprising proportion offered, uptake and discontinuation). A series of local data sources were identified to inform many of these, including the Quality and Outcomes Framework (QOF)¹⁸, the National Diabetes Audit¹⁹, National Cardiovascular Intelligence Network (NCVIN) prevalence estimates^{20 21}, and NHS Digital Stop Smoking Services Statistics ²². Where no local data could be identified, national data sources found through additional searches were used instead. Descriptions of these searches can be found in section 5 of the accompanying technical appendix.

A database of interventions and conditions was made to accompany the tool. This summarises all the evidence for each intervention and for each condition included in the tool.

Modelling and tool development

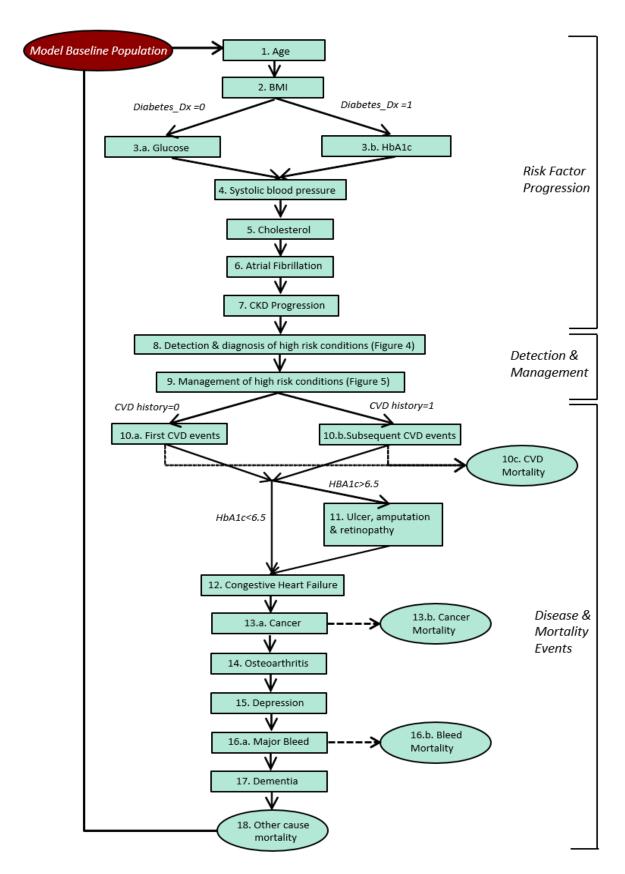
Tool user group and conceptual modelling

A group of potential tool users was recruited from amongst CCG and local authority public health representatives, PHE regional leads with responsibility for CVD, health professionals with CVD as a special interest and relevant charitable organisations. The tool user group was invited to a 1-day workshop to discuss what users would want from an ROI tool. Full details of the tool user group workshop materials and feedback can be found in section 6 of the accompanying technical appendix.

A conceptual model (a plan of the proposed tool detailing what information users would need to input and what information it would produce) was constructed based upon tool user group responses and modelling constraints. Feedback from the tool user group about the conceptual model was obtained through email and an online questionnaire, and changes were made to the conceptual model to incorporate this user feedback. The tool user group were also involved in testing the tool following its development, and their comments were incorporated into the final version of the tool prior to publication.

The tool design enables users to estimate the potential benefits to their local area of either improving detection or management of 1 or more high-risk conditions, or of improving the usage of 1 or more of the key interventions for people at risk of CVD. Following input of user-defined targets for detection, management or intervention usage, the underlying model is run and an email is sent to the tool user with a link to their model results. A flexible output page enables tool users to choose which outcomes to see and to download as a PDF.

Model design & development


A series of model adaptations were carried out to convert the pre-existing School for Public Health Research (SPHR) Diabetes Prevention model into a CVD Prevention model, which underpins the CVD Prevention ROI tool. Full details of these adaptations can be found in section 8 of the accompanying technical appendix, with just a brief summary presented here.

The SPHR Diabetes Prevention Model is an individual patient simulation model written in R programming code. The baseline population consists of a representative sample of the English population obtained from the Health Survey for England 2014 (HSE 2014)²³, which was chosen for its CVD and diabetes focus. The model simulates the aging of this cohort of people over time, and the changes in their individual metabolic

factors (and therefore disease risk) as they age, including body mass index (BMI), systolic blood pressure (SBP), cholesterol and blood glucose (HbA1c)⁶⁻⁸.

The model runs in annual cycles (see schematic in Figure 2). For each person, their BMI, cholesterol levels, SBP and HbA1c fluctuate from year to year, representing natural changes as people age and depending upon personal characteristics such as gender, ethnicity and smoking status. Every year in the model, an individual has a risk of undergoing 1 or more of a range of events including visiting the GP, being diagnosed with and treated for CVD high risk factors, suffering from disease events including cardiovascular disease, and dying; depending upon their personal characteristics. Each condition is associated with a utility decrement and a cost. Outcomes gathered each year include number of clinical events (including CVD and end stage renal failure), new diabetes diagnoses, costs, life years, quality adjusted life years (QALYs) and an estimate of premature mortality.

Figure 2: Model schematic showing the order in which updating of population characteristics takes place in each year of the simulation

The estimated number of individuals in England in each of the high CVD risk groups was ascertained using the national weights available within HSE 2014 (Table 1) and ONS estimates for the total population of England in 2017. This method was also used to obtain the numbers of individuals with 2 high risk conditions (Table 2).

Table 1: Proportion of individuals from HSE 2014²³ in each high risk group

High Risk Group	No. Individuals (HSE 2014)	Weighted Prevalence in Adult Population (age 16+)	Estimated No. Individuals (England)				
QRISK2 ≥10%	3,103	34%	15,149,093				
Hypertension	2,622	30%	13,459,209				
Familial hypercholesterolaemia	28	0.04%	191,833				
Non-diabetic hyperglycaemia	1,186	14%	6,267,794				
Diabetes	829	9.5%	4,273,364				
of which type 1 diabetes	50	0.6%	281,183				
of which type 2 diabetes	779	8.9%	4,003,378				
Atrial Fibrillation	280	3.0%	1,354,311				
Chronic Kidney Disease (stages 3-5)	577	6.0%	2,706,185				
At least 1 high risk condition	4,334	49%	22,363,307				
TOTAL POPULATION*	8,077	100%	45,340,600*				
*Total population aged >15 in England according to ONS (2017 estimates)							

Local demographic data (age, sex, deprivation and ethnicity) was used to develop different weights for each local area using the method of iterative proportional fitting (described in more detail in section 8.3 of the technical appendix). This enabled the tool to simulate the population of each local area.

Table 2: The estimated number of individuals in England with 2 high risk conditions

	QRISK2 ≥10%	Hyper- tension	AF	CKD	Pre- diabetes	Diabetes
QRISK2 ≥10%	15,149,093					
Hypertension	9,717,660	13,459,209				
AF	1,243,777	880,066	1,354,311			
CKD	2,491,019	1,705,808	318,318	2,706,185		
Pre-diabetes	2,928,954	2,626,741	238,025	632,693	6,267,794	
Diabetes	3,568,452	2,802,838	281,483	608,391	NA	4,273,364

Some of the high risk groups including diabetes, non-diabetic hyperglycaemia, hypertension and QRISK ≥ 10% were already adequately modelled in the pre-existing model. Inclusion of type 1 diabetes, AF, FH and CKD required additional modelling work to be carried out; this was informed through a series of reviews of previously published models. Full details of the methodology and findings of these model reviews is available in section 7 of the accompanying technical appendix.

QRISK2 and QStroke algorithms were used to model annual risk of first CVD event²⁴ ²⁵. Calculation of both risks in each simulated individual enabled a value for cardiac risk to be estimated separately from stroke risk. A series of modifications were applied to cardiac and stroke risk to enable CVD event rate to vary as a result of additional high risk conditions and interventions not included in the original QRISK2 and QStroke algorithms and to normalise against the current incidence of MI and stroke from Hospital Episode Statistics²⁶. The type of stroke or cardiac event suffered by each individual was assigned using age and sex dependent probabilities taken from a statins HTA²⁷. Following a first event, subsequent CVD events in the same individuals were modelled dependent upon age, sex and prior event only, as QRISK2 and QStroke are not valid for modelling subsequent CVD events. This does mean that the model may underestimate some of the benefit of interventions in preventing subsequent CVD events.

A range of other conditions were already included in the SPHR Diabetes Prevention model and modelling of these was retained in the CVD Prevention model. This included congestive heart failure; microvascular retinopathy, ulcer and amputation in people with diabetes; breast and bowel cancer, osteoarthritis, depression and dementia. Risk of major bleeding (upper gastrointestinal bleed and intercranial bleed) is increased significantly through usage of anticoagulants and so this was added to the model, together with information about mortality rates following major bleed. Mortality from CVD, cancer and bleed were modelled separately, with other cause mortality modelled through life table information.

The range of detection and management interventions identified as part of the review was added to the model. Detection was modelled through NHS Health Checks, annual review, cascade testing and opportunistic detection. Opportunistic detection was modelled as a process to identify additional individuals following the other 3 mechanisms, rather than through usage of the specific mechanisms identified as part of the evidence review. This enabled increases in detection through unspecified mechanisms to be included as part of the tool.

The model structure allows the proportion of individuals detected, managed or eligible for an intervention to be maintained at a specific user-defined value over time, despite dynamic changes in the absolute numbers of people eligible. Management for each condition was defined through usage of key management interventions. These included continuous interventions (pharmacological treatments, insulin pump and blood pressure self-monitoring), one-off interventions (lifestyle interventions including NHS DPP, weight management, nutritional advice and educational interventions for diabetes) and repeated interventions (medicines use review and smoking cessation).

All model costs were reviewed and updated, with new costs added where required to model the new health states. Utility scores for each health state were retained from the SPHR Diabetes Prevention model, with new utility decrements added to model major bleed. Following model development, a series of tests and validations were carried out to ensure that the model was behaving as expected.

In the ROI tool, each model run simulates the population twice; firstly, under the assumption of current care and secondly under the assumption of target care (inputted by the tool user), with the difference between these simulations then calculated. All results in the tool are presented as incremental (difference between current care and target care) and cumulative over time.

Exemplar analyses

A set of exemplar analyses has been carried out to demonstrate to tool users which interventions or detection and management strategies are likely to provide the most benefit. Each comparative analysis has been carried out by setting the target detection, management or intervention usage in turn to 100%, whilst keeping targets for all other interventions constant. Some analyses have also been carried out combining optimisation of 2 or 3 different interventions. All exemplar analyses have been carried out using England as the selected area. All outcomes are incremental (the difference between current care and target care), and cumulative over time. Presented outcomes for these comparative analyses include total financial cost savings, CVD events, premature mortality, and health benefits measured using Quality Adjusted Life Years (QALYs) and net monetary benefit (NMB). The latter measure combines cost-savings and health benefits into a single monetised value as follows:

NMB (£) = (incremental QALYs * value of a QALY) – incremental costs.

Where the value of a QALY has been assumed to be £60,000 as per Department of Health guidelines.

The analyses do not include estimates of uncertainty as probabilistic sensitivity analysis (the gold standard for uncertainty analysis in economic evaluations) is outside of the tool scope. However, it is important for users to note that there will be some uncertainty around these results and that uncertainty is likely to be higher for analyses that apply to small subgroups of the population (i.e. particularly those with FH or type 1 diabetes).

Results summary

A brief summary of the key results is shown here, with more detailed results described in the sections below.

The general trend is that the most beneficial short-term outcomes are obtained by optimising detection and management of people with QRISK ≥10% or through optimising usage of statins, whilst the most beneficial long-term outcomes are obtained through optimising detection and management of people with diabetes, or through optimising usage of antihypertensives or annual review.

Statins are the most cost-saving intervention in the short-term (£216m by year 2), but antihypertensives are most cost-saving in the long-term (£2.3 billion by year 20).

Combining the 2 leads to cost savings of over £4.1 billion by year 20.

Most lifestyle interventions (with the exception of the NHS DPP) are not cost-saving within the 20-year time horizon of the model; however this does not rule them out of being cost-saving beyond this time horizon.

The most cost-saving detection strategy at 20 years is to optimise diabetes detection, whereas the most cost-saving management strategy at 20 years is to optimise management of CKD. However, optimising detection of people with QRISK ≥10% saves costs rapidly (£59m by year 2). Cost savings come from the assumption that additional cases detected will be managed according to current care.

Prevention of the most CVD events and premature mortality cases is predicted to occur through optimising detection and management of diabetes (1.9m CVD events and 154k premature mortality cases prevented by year 20).

Of single interventions, annual review is predicted to prevent the most CVD events and premature mortality cases (325k CVD events and 31k premature mortality cases), indicating the importance of diagnosing (and therefore managing) comorbid conditions in people who already have 1 high risk condition.

Combining optimisation of statins, antihypertensives and anticoagulants is predicted to prevent 553k CVD events and 32k premature mortality cases, more than any other intervention combination tested.

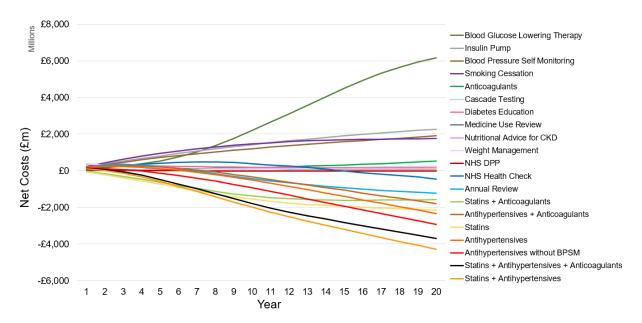
The greatest net monetary benefit at year 20 would be produced through optimising detection and management of diabetes (£169 billion), with the single interventions antihypertensives and annual review both producing around £33 billion of net monetary benefit, and the combined statins, antihypertensives and anticoagulants scenario producing £62 billion of net monetary benefit.

In the short-term, the greatest net monetary benefit would be produced through optimising detection and management of QRISK ≥10% (£918m at year 2), with statins being the single intervention producing the most net monetary benefit at year 2 (£650m).

Optimising detection of diabetes is hugely cost-saving by 20 years (£31 billion), whilst optimising management of diabetes or usage of blood glucose lowering therapy is not cost-saving by 20 years. This apparent discrepancy is due primarily to the benefits of early diabetes diagnosis in preventing expensive diabetes complications and enabling diabetes to be managed through cheaper first and second line treatments.

Optimising usage of interventions

Table 3 shows the intervention costs, total financial savings to the NHS and social care (CVD and non-CVD combined) and net total accrued after 2, 5 and 20 years. Please note that this table does not include the monetised value of health benefits (this is instead shown in Table 7). All interventions are predicted to produce cost-savings, but in many cases these are outweighed by the intervention costs, particularly in the short-term. However, some interventions may be cost-saving beyond the 20-year time horizon of the model. It is also important to note that novel oral anticoagulants will be coming off patent relatively soon, which will reduce the costs of anticoagulation, making it more likely that this intervention will also be cost-saving in the future.


Table 3: Intervention Costs, Total Savings (combined NHS and social care) and Net Total Financial Costs/Savings produced by maximising usage of each intervention.

Costs are positive and savings are negative. Net total costs are shown in red and net total savings shown in black. Interventions are shown in order with those producing the highest net cost-savings at 20 years at the top of the table.

		Year 2			Year 5			Year 20	
	Intervention Costs	Total Savings	Net Total	Intervention Costs	Total Savings	Net Total	Intervention Costs	Total Savings	Net Total
Statins + Antihypertensives	£621,108,601	-£603,175,652	£17,932,950	£1,367,017,855	-£1,947,887,566	-£580,869,711	£4,491,728,707	-£8,788,984,240	-£4,297,255,533
Statins + Antihypertensives + Anticoagulants	£752,023,737	-£682,144,575	£69,879,162	£1,717,446,364	-£2,192,697,826	-£475,251,462	£6,507,597,269	-£10,200,355,547	£3,692,758,278
Antihypertensives without BPSM	£400,035,818	-£282,945,805	£117,090,013	£832,302,912	-£963,257,758	-£130,954,846	£2,477,025,757	-£5,421,286,367	-£2,944,260,611
Antihypertensives	£528,611,018	-£304,248,008	£224,363,010	£1,143,229,620	-£1,029,306,547	£113,923,073	£3,426,610,823	-£5,761,658,824	-£2,335,048,000
Statins	£100,876,913	-£316,576,725	-£215,699,812	£234,474,239	-£971,644,001	-£737,169,762	£1,097,114,485	-£3,235,146,466	-£2,138,031,981
Antihypertensives + Anticoagulants	£659,856,400	-£389,564,202	£270,292,197	£1,493,646,291	-£1,286,930,085	£206,716,206	£5,434,710,922	-£7,230,786,531	-£1,796,075,609
Statins + Anticoagulants	£232,515,590	-£400,347,502	-£167,831,912	£587,608,820	-£1,229,166,469	-£641,557,649	£3,140,793,856	-£4,709,271,081	-£1,568,477,224
Annual Review	£565,519,863	-£236,468,943	£329,050,919	£1,141,298,540	-£916,356,252	£224,942,288	£2,860,128,232	-£4,099,442,146	-£1,239,313,913
NHS Health Check	£224,765,026	-£24,231,154	£200,533,872	£577,684,193	-£167,122,683	£410,561,511	£1,389,685,190	-£1,852,817,079	-£463,131,890
NHS DPP	£50,146,575	-£7,639,660	£42,506,915	£29,041,171	-£24,009,402	£5,031,769	£35,477,157	-£40,822,563	£5,345,406
Weight Management	£380,768,418	-£64,794,953	£315,973,465	£309,128,912	-£184,914,201	£124,214,711	£271,982,834	-£260,208,524	£11,774,310
Nutritional Advice for CKD	£121,818,196	-£29,864,570	£91,953,625	£84,611,944	-£62,361,111	£22,250,833	£97,330,981	-£80,042,627	£17,288,355
Medicine Use Review	£13,718,454	-£2,476,913	£11,241,541	£27,885,029	-£6,976,183	£20,908,846	£89,169,301	-£44,862,978	£44,306,323
Diabetes Education	£393,818,707	-£52,993,986	£340,824,721	£403,262,104	-£142,160,571	£261,101,533	£411,463,170	-£259,337,957	£152,125,213
Cascade Testing	£32,761,871	-£786,188	£31,975,683	£73,193,938	-£3,022,964	£70,170,974	£246,815,697	£4,241,935	£251,057,632
Anticoagulants	£132,080,860	-£90,356,501	£41,724,358	£353,367,237	-£269,752,365	£83,614,872	£2,033,165,905	-£1,511,754,245	£521,411,660
Smoking Cessation	£451,923,631	-£13,212,199	£438,711,432	£1,030,344,595	-£81,908,949	£948,435,646	£3,041,364,384	-£1,290,798,150	£1,750,566,234
Blood Pressure Self Monitoring	£374,442,107	-£55,503,309	£318,938,799	£905,552,800	-£190,632,881	£714,919,919	£2,852,811,587	-£951,772,265	£1,901,039,323
Insulin Pump	£358,169,565	-£1,071,565	£357,098,000	£814,426,229	-£4,972,803	£809,453,426	£2,295,771,232	-£32,246,185	£2,263,525,047
Blood Glucose Lowering Therapy	£220,059,088	-£72,569,805	£147,489,283	£812,978,579	-£286,604,045	£526,374,534	£10,009,354,411	-£3,852,740,070	£6,156,614,341

Figure 3: Total net costs and savings accrued over time by optimising usage of each intervention.

Costs are positive (above the horizontal axis) and savings are negative (below the horizontal axis).

The single intervention with the highest net total savings in the short term (years 2-5) is to optimise the proportion of people taking statins, which is predicted to save over £700m in England by year 5 (Table 3 & Figure 3). However, in the long term (20 years), optimising antihypertensive treatment is the single intervention predicted to save the most money (over £2 billion, or almost £3 billion if blood pressure self-monitoring costs are excluded). Other cost saving interventions over the 20-year time horizon include NHS Health Checks and annual review, indicating that detecting high risk conditions is a particularly cost-saving strategy (note that additional detected cases are assumed to be managed through current care, therefore increased detection leads to increased management).

Most of the lifestyle interventions (with the exception of the NHS DPP) are not costsaving over the 20-year time horizon. It is important to note that the impact of lifestyle interventions in preventing CVD may be under-estimated by the tool due to the lack of direct evidence linking these interventions to CVD. Whilst the CVD benefits have been modelled through the impact of metabolic changes on QRISK (BMI, systolic blood pressure, cholesterol and smoking), any CVD benefits acting independently of these metabolic changes will not be incorporated.

If users wish to look at the benefits of multiple policies (e.g. optimising usage of multiple interventions), then these should be run simultaneously. Some intervention combinations have been analysed to demonstrate the interactions between interventions aimed at treating different high risk conditions. The model assumes that

the interventions act independently on their respective risk factors and on CVD risk, as no evidence could be found to support an alternative hypothesis. The most cost-saving combination analysed here is to combine antihypertensive and statin treatment; predicted to save over £4 billion within 20 years. Note that because the model is an individual patient simulation it includes individuals with multiple comorbidities and therefore does not double count the benefits of 2 or more interventions given to the same person.

It is important to note that intervention costs relate not only to the selected intervention(s), but also to any changes in the absolute usage of other interventions that may occur as a consequence of keeping the proportion of people eligible for those interventions constant over time. An example of this is shown in Table 4, which focusses in on optimisation of NHS Health Checks. Only about half of the intervention costs in year 1 relate to cost of the NHS Health Check itself, with other costs coming from additional diagnostics to confirm diagnosis in those newly detected and from an increase in usage of management interventions that individuals are eligible for following their diagnosis.

Table 4: Breakdown of Intervention Costs following Optimisation of NHS Health Checks

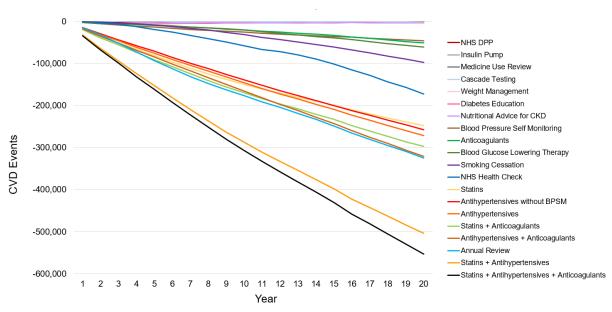
	NHS Health Checks		
	Year 1	Year 2	
NHS Health Check Costs	£53,707,329	£82,584,129	
Annual Review Costs	£0	£8,173,516	
Cascade Testing Costs	£1,634,835	£2,605,763	
Diagnosis Costs	£19,797,798	£35,809,494	
Statin Costs	£1,578,785	£5,453,065	
Antihypertensive Costs	£9,233,250	£25,134,455	
Anticoagulant Costs	£475,575	£252,433	
Blood Glucose Lowering Therapy Cost	£1,700,267	£6,454,479	
NHS DPP Costs	£10,819,482	£26,302,565	
Diabetes Education Costs	£213,579	£465,186	
Weight Management Costs	£3,450,484	£9,179,283	
Smoking Cessation Costs	£706,871	£1,959,560	
Nutritional Advice for CKD Costs	£86,973	£228,737	
Medicine Use Review Costs	£5,234,571	£10,736,107	
Blood Pressure Self Monitoring Costs	£3,094,873	£9,447,610	
Insulin Pump Costs	£0	-£21,356	
TOTAL INTERVENTION COSTS	£111,734,673	£224,765,026	

In general, the reasons for changes in the cost of other interventions can be summarised as follows:

Usage of interventions may be increased indirectly if more individuals live for longer as a result of the target change, or if more individuals are diagnosed with high risk conditions as a result of the target change (e.g. if the usage of NHS Health Checks is increased as shown in Table 4).

Usage of interventions may be reduced indirectly if individuals are healthier as a result of the target change (e.g. the NHS DPP reduces the usage of statins and antihypertensives as the intervention is predicted to reduce blood pressure and cholesterol and therefore reduce the numbers eligible for those treatments).

There are 2 interventions; blood pressure self-monitoring and medicine use review, which people taking either antihypertensive treatment or any pharmacological intervention are eligible for respectively. If a user chooses to increase usage of pharmacological interventions, this means that there will be a larger pool of people eligible for blood pressure self-monitoring or medicine use review, and therefore usage of these 2 interventions will increase indirectly. An example of the consequences of this is shown by comparing rows 3 and 4 in Table 3. In row 3, the indirect impact of additional blood pressure self-monitoring as a result of increasing antihypertensive usage has been removed by setting its usage to 0% for both current and target care. This reduces the intervention costs more than it reduces the total savings, resulting in a higher net total saving at 20 years compared to row 4.


All interventions are predicted to prevent CVD events (Table 5 & Figure 4), with the single intervention preventing most events being annual review. Annual review is used to identify and thereby manage additional high risk comorbidities in people with a pre-existing condition, so this indicates the importance for CVD prevention of intervening in people at very high risk due to multiple comorbidities. The pharmacological treatments tend to perform better than lifestyle interventions in preventing CVD over the short and long-term, with smoking cessation also producing important benefits. Combining pharmacological treatments increases the health benefits produced in a linear way.

Most of the lifestyle interventions have been assumed to have a 5-year duration of effect. Optimising usage of these interventions to 100% leads to all eligible individuals receiving it in the first year and only small numbers of newly diagnosed receiving it in subsequent years. This means that most of the benefits of lifestyle interventions in preventing CVD are seen in the first 5 years of the model, after which some individuals succumb to delayed CVD, thereby reducing the number of cumulative CVD events prevented.

Table 5: CVD Events prevented over time by optimising usage of each intervention. Interventions are shown in order with those producing the highest reduction in events at 20 years at the top of the table.

	Year 2	Year 5	Year 10	Year 20
Statins + Antihypertensives + Anticoagulants	-68,101	-162,369	-307,481	-552,983
Statins + Antihypertensives	-64,298	-153,452	-287,750	-503,737
Annual Review	-32,398	-93,578	-176,450	-325,005
Antihypertensives + Anticoagulants	-35,640	-85,268	-166,153	-321,364
Statins + Anticoagulants	-39,010	-91,543	-170,089	-297,765
Antihypertensives	-31,568	-76,038	-146,360	-271,331
Antihypertensives without BPSM	-29,898	-71,161	-139,352	-257,867
Statins	-34,971	-82,135	-149,583	-247,390
NHS Health Check	-3,337	-19,454	-58,607	-173,242
Smoking Cessation	-1,895	-8,968	-31,801	-97,584
Blood Glucose Lowering Therapy	-3,496	-8,809	-20,817	-61,561
Anticoagulants	-4,358	-9,764	-20,748	-51,228
Blood Pressure Self Monitoring	-5,821	-14,127	-25,721	-46,014
Nutritional Advice for CKD	-4,234	-4,645	-3,099	-4,020
Diabetes Education	-3,326	-5,123	-4,068	-3,353
Weight Management	-4,449	-6,509	-3,896	-2,205
Cascade Testing	-136	-355	-757	-1,455
Medicine Use Review	-129	-284	-618	-1,254
Insulin Pump	-86	-221	-372	-676
NHS DPP	-709	-1,278	-1,271	-502

Figure 4: CVD Events prevented over time by optimising usage of each intervention

Most interventions are predicted to reduce premature mortality in the long-term, with annual review being the single intervention producing the most benefit (Table 6). The main exception is anticoagulants. The increase in cases of premature mortality seen with these drugs is due to the incorporation of increased mortality associated with major bleeding in the model. It is possible that the model is overestimating the numbers of younger people suffering from a bleed and underestimating the numbers of older people suffering from a bleed. This is because the data used to calculate CVD mortality

is age-dependent, whereas the data used to calculate bleeding mortality in the model is equally applied to individuals of all ages. This may mean that the increase in premature mortality seen in the model following anticoagulant treatment is not significant. Note also that optimising usage of statins, antihypertensives and anticoagulants together reduces premature mortality further than optimising usage of just statins and antihypertensives.

It is important to note that despite the increase in premature mortality, total mortality is reduced and the gain in life years and QALYs far outweighs the cases of premature mortality when anticoagulant usage is optimised (data not shown here, but total life years gained by year 20 is predicted to be almost 80,000 through the tool). Other interventions occasionally show some increase in premature mortality, but this is small and variable over the time period covered by the model, indicating that it is not likely to be significant.

Table 6: Premature mortality prevented over time by optimising usage of each intervention.

Figures in red indicate increases in premature mortality. Interventions are shown in order with those producing the highest reduction in premature mortality at 20 years at the top of the table.

	Year 2	Year 5	Year 10	Year 20
Statins + Antihypertensives + Anticoagulants	-3,164	-7,691	-15,725	-31,623
Statins + Antihypertensives	-3,096	-7,521	-15,345	-31,210
Annual Review	-2,189	-6,423	-14,619	-30,830
Antihypertensives	-1,734	-4,325	-8,825	-19,187
Antihypertensives + Anticoagulants	-1,692	-4,166	-8,491	-18,485
Antihypertensives without BPSM	-1,440	-3,911	-8,340	-17,772
NHS Health Check	-269	-1,614	-5,526	-15,840
Statins	-1,548	-3,823	-7,604	-14,282
Statins + Anticoagulants	-1,491	-3,675	-7,353	-13,456
Smoking Cessation	-165	-897	-3,281	-11,123
Blood Glucose Lowering Therapy	-195	-443	-1,446	-6,114
Blood Pressure Self Monitoring	-229	-605	-1,375	-3,069
Weight Management	-225	-399	-571	-952
Diabetes Education	-280	-461	-559	-842
NHS DPP	-54	-185	-313	-702
Nutritional Advice for CKD	-134	-190	-60	-581
Cascade Testing	15	-5	-114	-222
Insulin Pump	-6	-20	-42	-90
Medicine Use Review	-8	-1	25	61
Anticoagulants	32	137	351	540

Within the 20 year time horizon, all but 2 interventions produce net monetary benefit (NMB) using £60,000 as the value of a QALY (Table 7 & Figure 5). However, only a very small number of people in the model have FH or type 1 diabetes and therefore this contributes to high uncertainty around the benefits of Cascade testing and insulin pump.

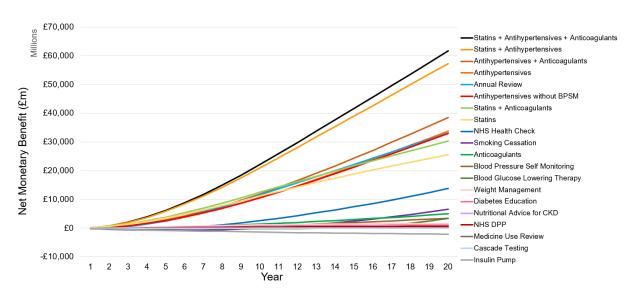

Note that a positive net monetary benefit implies the intervention has an average cost per QALY of less than £60,000 or is cost-saving. A negative net monetary benefit implies the intervention has an average cost per QALY of greater than £60,000. However, we cannot make judgements about cost-effectiveness based on these figures, as costs and benefits have not been assessed over a lifetime horizon.

Table 7: Net Monetary Benefit (value of a QALY = £60,000) obtained over time by optimising usage of each intervention.

Figures in red indicate negative NMB, whilst figures in black indicate positive NMB. Interventions are shown in order with those producing the highest NMB at 20 years at the top.

	Year 2	Year 5	Year 10	Year 20
Statins + Antihypertensives + Anticoagulants	£764,286,234	£6,104,960,118	£22,162,681,374	£61,663,069,068
Statins + Antihypertensives	£761,079,120	£5,847,360,447	£20,962,312,599	£57,291,288,393
Antihypertensives + Anticoagulants	£161,096,577	£2,811,029,856	£11,856,787,881	£38,437,553,765
Antihypertensives	£147,298,158	£2,518,846,267	£10,584,202,754	£33,738,541,174
Annual Review	-£6,880,037	£2,491,243,318	£11,518,587,355	£33,023,355,479
Antihypertensives without BPSM	£234,214,745	£2,624,723,350	£10,534,778,008	£32,922,905,795
Statins + Anticoagulants	£658,901,150	£3,826,706,357	£12,429,154,289	£30,342,355,774
Statins	£649,652,806	£3,542,320,626	£11,104,021,766	£25,572,753,027
NHS Health Check	-£171,030,828	-£11,722,395	£2,543,494,016	£13,798,246,424
Smoking Cessation	-£420,703,476	-£734,483,758	-£41,604,039	£6,517,222,398
Anticoagulants	£20,211,470	£320,424,984	£1,396,762,646	£4,924,831,828
Blood Pressure Self Monitoring	-£251,952,531	-£223,630,475	£620,360,521	£3,407,583,917
Blood Glucose Lowering Therapy	-£80,505,847	-£56,626,716	-£197,649,576	£3,345,890,789
Weight Management	-£207,537,991	£396,469,483	£1,085,361,572	£1,601,004,366
Diabetes Education	-£281,968,537	£70,875,635	£592,055,784	£1,045,702,367
Nutritional Advice for CKD	-£49,964,503	£186,979,985	£392,036,504	£702,974,613
NHS DPP	-£30,465,161	£100,306,481	£335,114,573	£615,177,498
Medicine Use Review	-£9,126,787	-£5,736,448	£16,023,005	£105,091,991
Cascade Testing	-£30,390,207	-£64,775,666	-£81,873,539	-£103,832,254
Insulin Pump	-£355,436,096	-£799,574,402	-£1,388,033,813	-£2,142,573,933

Figure 5: Net Monetary Benefit obtained over time by optimising usage of each intervention.

Optimising detection and management of high risk conditions

Table 8 shows the intervention costs, total savings (CVD and non-CVD combined) and net total accrued after 2, 5 and 20 years when optimising detection and/or management of each condition. Detecting and managing each of the high risk conditions is predicted to produce cost-savings, but in many cases these are lower than the costs of the interventions whose use is increased as a direct or indirect consequence of the additional detection and management.

Additional detection or management of high risk conditions leads directly to increased usage of interventions that NICE guidelines recommend for managing the high risk condition of interest (a full list of these for each condition can be found in the database of interventions). It is assumed that additional detection occurs through opportunistic mechanisms, therefore increased detection does not directly lead to increased usage of NHS Health Check or annual review. However, there may be indirect consequences as outlined above. An additional indirect consequence of increasing the target for detection is that the numbers eligible for NHS Health Check (i.e. with no diagnosed high risk condition) will be reduced and the numbers eligible for annual review (i.e. those with 1 or more diagnosed high risk condition) will be increased.

In the short term most money is saved by optimising detection and management of CKD (net savings of £802m by year 5) (Table 8 & Figure 6). This is likely to be due to a combination of costs saved through CVD prevention and prevention of end-stage renal failure which is very expensive to manage. Optimising detection of those with QRISK ≥10% is also very cost-saving in the short term (net savings of £59m by year 2 and £555m by year 5). This is likely to be due to 2 factors; firstly, the current percentage of those diagnosed with QRISK ≥10% is only 10.7% so potential improvements are large, and secondly, the primary management intervention is statins, which are very cost-saving (see the optimising interventions section).

Table 8: Intervention Costs, Total Savings (combined NHS and social care) and Net Total Financial Costs/Savings produced by maximising detection and/or management of each high risk condition.

Costs are positive (net total costs in red) and savings are negative (net total costs in black). Conditions are shown in order with those producing the highest net cost-savings at 20 years at the top of each subsection of the table.

		Year 2			Year 5			Year 20	
	Intervention Costs	Total Savings	Net Total	Intervention Costs	Total Savings	Net Total	Intervention Costs	Total Savings	Net Total
Detection Diabetes	£267,052,390	-£86,455,367	£180,597,023	£763,207,582	-£223,639,635	£539,567,948	£2,931,207,158	-£34,562,907,341	-£31,631,700,183
Detection QRISK ≥10%	£361,078,532	-£420,105,604	£59,027,072	£934,653,688	-£1,490,015,971	-£555,362,283	£4,553,716,479	-£5,284,571,117	-£730,854,638
Detection CKD	£83,790,677	-£123,643,108	-£39,852,431	£178,068,011	-£384,112,540	-£206,044,529	£596,411,091	-£1,108,681,352	-£512,270,261
Detection Hypertension	£838,113,811	-£171,530,791	£666,583,021	£1,606,452,179	-£681,358,798	£925,093,381	£4,003,447,327	-£4,059,032,556	-£55,585,229
Detection FH	£177,279,002	-£15,254,092	£162,024,909	£250,152,093	-£50,612,307	£199,539,786	£502,530,477	-£194,983,261	£307,547,216
Detection AF	£167,765,061	-£95,635,665	£72,129,396	£478,863,544	-£325,575,775	£153,287,769	£2,535,998,574	-£1,680,814,247	£855,184,327
Detection NDH	£1,315,546,693	-£59,065,079	£1,256,481,614	£2,793,277,997	-£381,441,991	£2,411,836,006	£4,008,346,672	-£373,653,471	£3,634,693,200
Management CKD	£422,264,750	-£370,660,437	£51,604,313	£586,362,425	-£1,025,697,868	-£439,335,444	£1,618,763,597	-£2,721,000,961	-£1,102,237,363
Management QRISK ≥10%	£329,972,849	-£155,236,499	£174,736,350	£634,302,076	-£540,256,061	£94,046,015	£2,650,276,975	-£2,877,236,971	-£226,959,996
Management FH	£2,430,124	-£306,626	£2,123,498	£4,799,062	-£599,966	£4,199,096	£12,537,464	£8,285,673	£20,823,138
Management NDH	£93,088,880	-£9,815,830	£83,273,050	£101,534,337	-£31,934,864	£69,599,473	£195,692,686	-£122,892,131	£72,800,555
Management Hypertension	£1,214,385,911	-£219,250,999	£995,134,913	£2,292,514,047	-£809,023,256	£1,483,490,791	£5,692,531,716	-£5,174,655,013	£517,876,703
Management AF	£209,203,419	-£100,345,301	£108,858,118	£491,502,190	-£301,160,852	£190,341,338	£2,444,596,071	-£1,716,794,476	£727,801,595
Management Diabetes	£2,000,160,461	-£247,628,140	£1,752,532,321	£4,233,862,590	-£864,311,820	£3,369,550,770	£19,107,347,160	-£6,365,028,365	£12,742,318,795
Detection & Management Diabetes	£2,511,109,639	-£371,424,526	£2,139,685,112	£5,350,568,725	-£1,216,930,832	£4,133,637,893	£19,111,104,478	-£40,244,416,033	-£21,133,311,555
Detection & Management CKD	£717,238,622	-£658,377,581	£58,861,042	£1,086,406,307	-£1,889,265,617	-£802,859,309	£3,233,433,812	-£5,026,641,056	-£1,793,207,243
Detection & Management QRISK ≥10%	£2,916,175,029	-£1,625,897,041	£1,290,277,988	£6,081,164,840	-£5,324,133,133	£757,031,707	£21,451,032,324	-£21,491,797,878	-£40,765,554
Detection & Management FH	£200,559,642	-£18,645,297	£181,914,344	£295,053,289	-£62,049,485	£233,003,803	£608,959,517	-£243,273,177	£365,686,340
Detection & Management AF	£437,531,566	-£228,963,313	£208,568,253	£1,117,755,113	-£723,512,672	£394,242,441	£5,728,676,411	-£3,942,779,279	£1,785,897,131
Detection & Management Hypertension	£2,987,927,895	-£519,754,274	£2,468,173,621	£5,846,167,218	-£1,953,171,505	£3,892,995,713	£14,990,522,795	-£12,189,692,463	£2,800,830,333
Detection & Management NDH	£2,896,826,961	-£177,368,132	£2,719,458,829	£4,915,371,352	-£805,002,049	£4,110,369,303	£7,477,060,976	-£2,025,645,089	£5,451,415,887

In the long-term, optimising detection of those with diabetes is estimated to save the most money (almost £32 billion), which is far higher than detection or management of any other condition (Table 8, Figure 6, Figure 7 & Figure 8). This is likely to be partially due to the fact that the proportion of people thought to have undiagnosed diabetes is high (about 30% of the total), and partially due to the high costs of treating diabetes and its complications. Perhaps counterintuitively, optimising management of diabetes in those already detected does not produce net cost savings within 20 years. The reason for this discrepancy between optimising management and detection of diabetes is likely to be due to the benefits of early detection of diabetes. By optimising detection, individuals are diagnosed within a year after getting diabetes, when their HbA1c is only just over 6.5%. These people are known to have much better outcomes than people diagnosed at higher HbA1c (UKPDS study²⁸), and within a 20 year time horizon tend to only require treatment with the relatively cheap first and second line glucose lowering therapies such as metformin. Conversely, optimising management of those who are already detected, but who are not being treated adequately, is likely to require the much more expensive third line therapies including insulin. Note that optimising both detection and management together for any of the high risk conditions does not produce additive effects.

Figure 6: Total net costs and savings accrued over time by optimising detection of each high risk condition.

Costs are positive (above the horizontal axis) and savings are negative (below the horizontal axis).

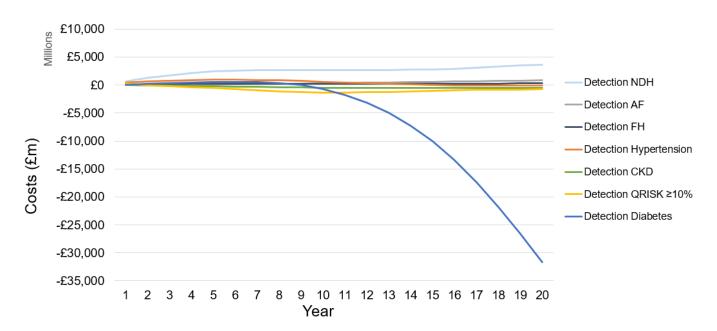


Figure 7: Total net costs and savings accrued over time by optimising management of each high risk condition.

Costs are positive (above the horizontal axis) and savings are negative (below the horizontal axis).

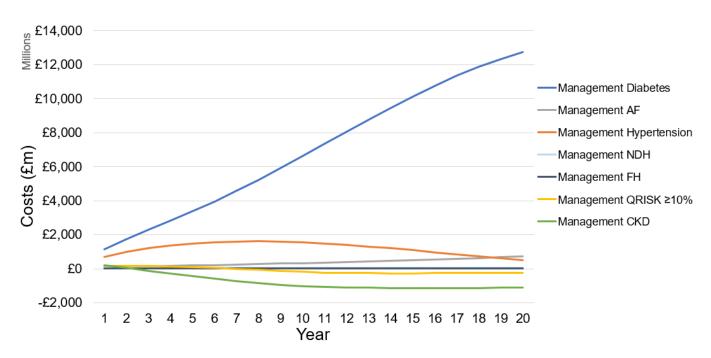
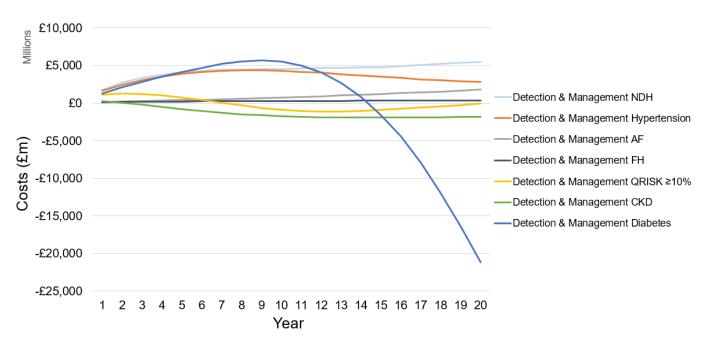



Figure 8: Total net costs and savings accrued over time by optimising detection & management of each high risk condition.

Costs are positive (above the horizontal axis) and savings are negative (below the horizontal axis).

CVD events are prevented when detection and management is optimised for all high risk conditions (Table 9 & Figure 9). In line with cost savings, most CVD events are prevented in the short-term by improving detection of QRISK ≥10%, and in the long-term by improving detection of diabetes, with even more events prevented if management is optimised at the same time.

Optimising detection of NDH actually causes an increase in the number of CVD events by year 20. This is likely to be due to the fact that people identified with NDH are primarily eligible for the DPP, a one-off intervention which has only a 5-year duration of effect. Although this delays the onset of diabetes and CVD, individuals will eventually succumb to these conditions after the DPP effectiveness wears off, thereby reducing the number of cumulative CVD events prevented in the long-term. This indicates the importance of also optimising the management of NDH, and the detection and management of diabetes if long-term benefits are to be seen.

Table 9: CVD Events prevented over time by optimising detection and/or management of each high risk condition.

Conditions are shown in order with those producing the highest reduction in CVD events at 20 years at the top of each subsection of the table.

	Year 2	Year 5	Year 10	Year 20
Detection Diabetes	-15,478	-47,362	-299,906	-1,691,096
Detection QRISK ≥10%	-51,780	-137,702	-251,802	-488,946
Detection Hypertension	-19,074	-51,796	-116,539	-190,798
Detection CKD	-13,144	-31,637	-51,482	-65,809
Detection AF	-4,650	-12,366	-25,074	-59,946
Detection FH	-3,031	-6,614	-9,780	-15,232
Detection NDH	-6,093	-23,684	-9,123	1,271
Management Hypertension	-21,757	-58,071	-126,344	-249,658
Management Diabetes	-21,568	-50,494	-102,791	-222,240
Management CKD	-38,327	-78,377	-126,060	-192,929
Management QRISK ≥10%	-16,228	-41,530	-89,611	-166,276
Management AF	-5,300	-11,662	-24,565	-60,861
Management NDH	-824	-1,725	-2,907	-5,475
Management FH	-34	-78	-121	48
Detection & Management Diabetes	-40,311	-105,713	-415,380	-1,936,938
Detection & Management QRISK ≥10%	-175,238	-419,835	-788,389	-1,375,369
Detection & Management Hypertension	-54,353	-144,166	-313,980	-576,808
Detection & Management CKD	-68,447	-143,888	-221,106	-322,066
Detection & Management AF	-11,527	-27,475	-57,700	-141,071
Detection & Management NDH	-16,527	-46,206	-44,222	-90,699
Detection & Management FH	-3,610	-7,959	-12,628	-20,294

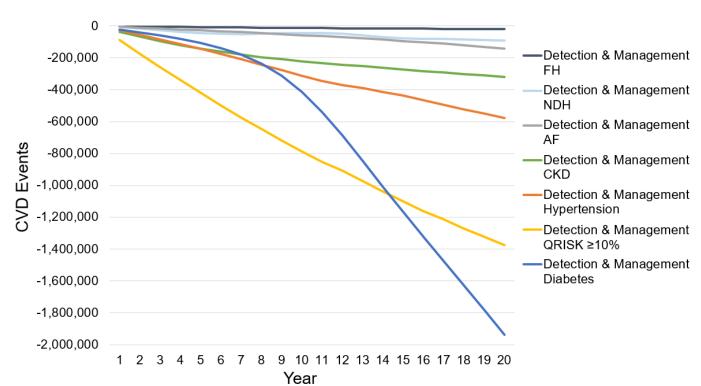


Figure 9: CVD Events prevented over time by optimising detection and management of each high risk condition

Premature mortality is predicted to be generally reduced through improving detection and management of all high risk conditions apart from AF, where optimising detection and/or management results in a small increase in premature mortality at some time points due to the increase in mortality through bleeding risk with anticoagulant treatment

Note that even though improving detection of AF results in an increase in premature mortality, it also results in a large reduction in CVD events and an increase in life years and QALYs overall (not shown here). The increase in premature mortality seen at year 20 in people with NDH is due to an indirect increase in eligibility for anticoagulants in people with diagnosis of diabetes delayed due to the early detection of NDH. The highest reduction of premature mortality is produced through optimising detection and management of diabetes (154k cases prevented).

Table 10: Premature mortality prevented over time by optimising detection and/or management of each high-risk condition.

Figures in red indicate increases in premature mortality. Conditions are shown in order with those producing the highest reduction in premature mortality at 20 years at the top of each subsection of the table.

	Year 2	Year 5	Year 10	Year 20
Detection Diabetes	-655	-1,417	-18,309	-132,973
Detection QRISK ≥10%	-3,559	-9,157	-16,190	-30,017
Detection Hypertension	-1,145	-3,223	-7,018	-12,864
Detection CKD	-492	-1,064	-1,794	-3,301
Detection FH	-304	-892	-1,306	-2,031
Detection AF	49	260	689	667
Detection NDH	-560	-3,523	-4,937	3,859
Management Diabetes	-1,289	-3,281	-7,725	-20,986
Management Hypertension	-1,187	-3,442	-8,361	-18,449
Management CKD	-1,022	-2,374	-4,590	-9,449
Management QRISK ≥10%	-1,349	-2,612	-5,576	-9,035
Management NDH	-66	-232	-589	-1,280
Management AF	0	104	127	-1,001
Management FH	-13	-12	-72	-29
Detection & Management Diabetes	-2,247	-5,391	-27,174	-154,345
Detection & Management QRISK ≥10%	-10,205	-23,146	-43,393	-74,623
Detection & Management Hypertension	-2,956	-8,996	-20,707	-42,523
Detection & Management CKD	-1,862	-4,385	-8,171	-16,488
Detection & Management NDH	-1,575	-7,097	-9,967	-7,763
Detection & Management FH	-365	-974	-1,582	-2,017
Detection & Management AF	48	339	595	-613

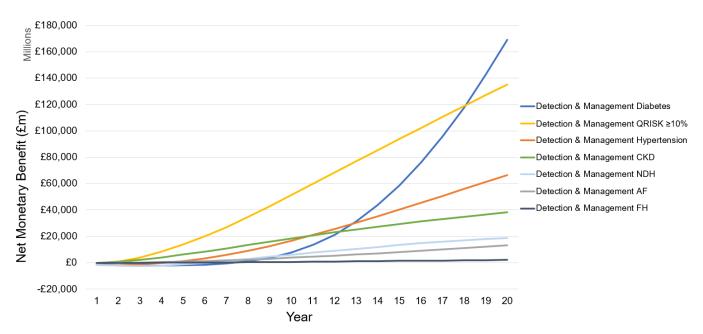

Optimising detection and management of all conditions produces net monetary benefit by year 20 (Table 11 & Figure 10). Detection and management of people with QRISK ≥ 10% produces the highest NMB in the short-term (£919m at year 2), whilst in the long-term, detection and management of new diabetes cases produces much higher NMB than any of the other options (£169 billion at year 20).

Table 11: Net Monetary Benefit (value of a QALY = £60,000) obtained over time by optimising detection and/or management of each high risk condition.

Figures in red indicate negative NMB, whilst figures in black indicate positive NMB. Conditions are shown in order with those producing the highest NMB at 20 years at the top of each subsection of the table.

	Year 2	Year 5	Year 10	Year 20
Detection Diabetes	-£215,686,751	-£816,736,646	£5,740,840,219	£153,961,707,765
Detection QRISK ≥10%	£648,972,188	£4,909,853,727	£17,311,547,582	£42,659,145,554
Detection Hypertension	-£444,836,935	£802,378,421	£6,958,557,107	£23,752,373,801
Detection NDH	-£1,166,913,386	-£1,169,668,186	£3,171,098,116	£8,312,152,074
Detection CKD	£202,953,473	£1,306,275,443	£4,123,998,623	£8,084,690,453
Detection AF	-£4,571,880	£335,478,855	£1,651,979,024	£5,464,605,875
Detection FH	-£128,319,261	£21,990,156	£512,507,152	£1,743,070,804
Management Hypertension	-£713,135,231	£553,047,479	£6,653,080,203	£27,542,400,433
Management CKD	£424,265,101	£3,362,577,726	£10,230,052,775	£21,865,904,347
Management QRISK ≥10%	£30,493,806	£1,319,679,547	£5,548,905,145	£16,126,241,892
Management Diabetes	-£1,445,628,535	-£1,399,407,702	£436,474,331	£11,335,261,001
Management AF	-£32,707,672	£300,774,658	£1,517,934,215	£5,689,782,613
Management NDH	-£68,330,332	£58,480,427	£376,258,567	£1,081,587,955
Management FH	-£1,769,102	£7,774	£5,631,907	£9,978,450
Detection & Management Diabetes	-£1,817,520,758	-£2,077,568,207	£7,707,450,839	£168,998,385,363
Detection & Management QRISK ≥10%	£918,932,098	£13,701,106,307	£51,235,394,709	£135,030,263,040
Detection & Management Hypertension	-£1,792,285,183	£1,148,499,313	£16,499,555,075	£66,302,937,291
Detection & Management CKD	£792,450,218	£6,146,183,825	£18,377,589,590	£38,287,894,145
Detection & Management NDH	-£2,454,409,009	-£1,347,248,301	£6,080,729,875	£18,674,951,427
Detection & Management AF	-£38,952,465	£752,294,535	£3,718,753,468	£13,301,235,703
Detection & Management FH	-£142,222,304	£33,431,297	£613,369,886	£2,085,523,960

Figure 10: Net Monetary Benefit obtained over time by optimising detection and management of each high risk condition.

Further information

The accompanying technical appendix contains full details of the reviewing methodology and findings, the modelling adaptations and the tool user group input.

The database of interventions and conditions (linked through the tool) summarises all the information about the values and data sources used in the model for each of the interventions and high risk conditions.

The PHE CVD Prevention ROI tool can be found at the following link: https://cvd-prevention.shef.ac.uk/

The tool user guide (linked through the tool) provides information on how to use the tool including a worked example and explanation of the results.

An example of an output for a model run where the target usage of antihypertensives has been set to 100% in England can be found at the following link: https://cvd-prevention.shef.ac.uk/model_runs/215

If you have any further questions about the tool, please email: healtheconomics@phe.gov.uk.

References

- 1. Cardiovascular Disease Statistics 2017: British Heart Foundation; 2017 [Available from: https://www.bhf.org.uk/research/heart-statistics/heart-statistics-publications/cardiovascular-disease-statistics-2017 accessed 10th January 2018.
- 2. Bhatnagar P, Wickramasinghe K, Williams J, et al. The epidemiology of cardiovascular disease in the UK 2014. *Heart* 2015;101(15) doi: doi:10.1136/heartjnl-2015-307516
- 3. European Cardiovascular Disease Statistics: European Heart Network; 2017 [Available from: http://www.ehnheart.org/cvd-statistics/cvd-statistics-2017.html accessed 10th January 2018.
- 4. Cardiovascular Disease Outcomes Strategy: Improving outcomes for people with or at risk of cardiovascular disease: DH Cardiovascular Disease Team; 2013 [Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/217118/9387-2900853-CVD-Outcomes web1.pdf accessed 10th January 2018.
- 5. Cardiovascular Disease Prevention: Risk Detection and Management in Primary Care: NHS Rightcare; 2016 [Available from: https://www.england.nhs.uk/rightcare/wp-content/uploads/sites/40/2016/09/cvd-pathway.pdf accessed 10th January 2018.
- Breeze PR, Thomas C, Squires H, et al. Cost-effectiveness of population-based, community, workplace and individual policies for diabetes prevention in the UK. *Diabetic Medicine* 2017;34:1136-44. doi: DOI: 10.1111/dme.13349
- 7. Breeze PR, Thomas C, Squires H, et al. The impact of Type 2 diabetes prevention programmes based on risk-identification and lifestyle intervention intensity strategies: a cost-effectiveness analysis. *Diabetic Medicine* 2017;34:632-40. doi: 10.1111/dme.13314
- 8. Thomas C, Sadler S, Breeze P, et al. Assessing the potential return on investment of the proposed UK NHS diabetes prevention programme in different population subgroups: an economic evaluation. *BMJ Open* 2017;7:e014953. doi: doi:10.1136/bmjopen-2016-014953
- 9. Sadler S, Thomas C, Brennan A, et al. NHS Diabetes Prevention Programme Return on Investment Tool V1.0: Public Health England & University of Sheffield; 2016 [Available from: https://dpp-roi-tool.shef.ac.uk/.
- 10. NICE Guideline CG127: Hypertension; The clinical management of primary hypertension in adults: National Institute for Health and Care Excellence, 2011.
- 11. NICE Guideline CG180: Atrial Fibrillation; The management of atrial fibrillation: National Institute for Health and Care Excellence, 2014.
- 12. NICE Guideline CG71: Identification and management of familial hypercholesterolaemia (FH): National Institute for Health and Care Excellence, 2008 (update 2017).
- 13. NICE Guideline CG181: Lipid modification; Cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease: National Institute for Health and Care Excellence, 2014.
- 14. NICE Guideline NG17: Type 1 diabetes in adults; Diagnosis and management: National Institute for Health and Care Excellence, 2015.
- 15. NICE Guideline NG28: Type 2 diabetes in adults; Management: National Institute for Health and Care Excellence, 2015.
- 16. NICE Public Health Guideline PH38: Type 2 diabetes; prevention in people at high risk: National Institute for Health and Care Excellence, 2012 (update 2017).
- 17. NICE Guideline CG182: Chronic Kidney Disease in adults; Assessment and management: National Institute for Health and Care Excellence, 2014.
- 18. Quality and Outcomes Framework: NHS Digital; 2017 [Available from: http://content.digital.nhs.uk/qof accessed 16th January 2018.

- 19. National Diabetes Audit: NHS Digital; 2017 [Available from: http://content.digital.nhs.uk/nda accessed 16th January 2018.
- 20. CKD prevalence estimates for local and regional populations. National Cardiovascular Intelligence Network: Public Health England; 2015 [Available from: https://www.gov.uk/government/publications/ckd-prevalence-estimates-for-local-and-regional-populations accessed 18th May 2018.
- 21. Atrial fibrillation prevalence estimates for local populations. National Cardiovascular Intelligence Network: Public Health England; 2017 [Available from: https://www.gov.uk/government/publications/atrial-fibrillation-prevalence-estimates-for-local-populations accessed 18th May 2018.
- 22. Statistics on NHS Stop Smoking Services in England April 2016 to March 2017: NHS Digital; 2017 [Available from: https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-nhs-stop-smoking-services-in-england/statistics-on-nhs-stop-smoking-services-in-england-april-2017-to-december-2017 accessed May 18th 2018.
- 23. Health Survey for England 2014: NHS Digital; 2014 [Available from: https://data.gov.uk/dataset/health_survey_for_england.
- 24. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. *BMJ Open* 2008;336:a332. doi: doi:10.1136/bmj.39609.449676.25
- 25. Hippisley-Cox J, Coupland C, Brindle P. Derivation and validation of QStroke score for predicting risk of ischaemic stroke in primary care and comparison with other risk scores: a prospective open cohort study. *BMJ* 2013;346:f2573 doi: doi: https://doi.org/10.1136/bmj.f2573
- 26. Hospital Episode Statistics: Hospital Admitted Patient Care Activity: NHS Digital; 2017 [accessed 21st May 2018.
- 27. Ward S, Lloyd JM, Pandor A, et al. A systematic review and economic evaluation of statins for the prevention of coronary events. . *Health Technol Assess* 2007;11(14):1-iv.
- 28. Clarke PM, Gray AM, Briggs A, et al. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). *Diabetologia* 2004;47(10):1747-59.