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1 Summary

Brazil is an epicentre for COVID-19 in Latin America. In this report we describe the Brazilian epidemic

using three epidemiological measures: the number of infections, the number of deaths and the repro-

duction number. Our modelling framework requires sufficient death data to estimate trends, and we

therefore limit our analysis to 16 states that have experienced a total of more than fifty deaths. The

distribution of deaths among states is highly heterogeneous, with 5 states—São Paulo, Rio de Janeiro,

Ceará, Pernambuco and Amazonas—accounting for 81% of deaths reported to date. In these states, we

estimate that the percentage of people that have been infected with SARS-CoV-2 ranges from 3.3% (95%

CI: 2.8%-3.7%) in São Paulo to 10.6% (95% CI: 8.8%-12.1%) in Amazonas. The reproduction number (a

measure of transmission intensity) at the start of the epidemic meant that an infected individual would

infect three or four others on average. Following non-pharmaceutical interventions such as school clo-

sures and decreases in population mobility, we show that the reproduction number has dropped sub-

stantially in each state. However, for all 16 states we study, we estimate with high confidence that the

reproduction number remains above 1. A reproduction number above 1 means that the epidemic is

not yet controlled and will continue to grow. These trends are in stark contrast to other major COVID-

19 epidemics in Europe and Asia where enforced lockdowns have successfully driven the reproduction

number below 1. While the Brazilian epidemic is still relatively nascent on a national scale, our results

suggest that further action is needed to limit spread and prevent health system overload.

2 Introduction

The world faces an unprecedented public health emergency in the COVID-19 pandemic. Since the emer-

gence of the novel coronavirus (SARS-CoV-2) in China in December 2019, global spread has been rapid,

with over 3.5 million cases and almost 250 thousand deaths reported from 187 countries as of the 6th

May [13]. Though transmission of the disease beyond Asia was initially centred aroundWestern Europe

and North America, significant spread is now seen in other parts of the world, including many countries

across Sub-Saharan Africa and Latin America.

One such area of concern is Brazil - since report of its first case on 25th February, its epidemic has grown

quickly, with the country now reporting over 135,000 cases and over 7,000 deaths [14].In response

to significant spread and community transmission of the virus within the country, Brazilian state and

city officials have mandated extensive public health measures to reduce the transmission of COVID-

19, including declaring a state of emergency, mandating the closure of retail and service businesses,
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restricting transportation, and closing schools. Specific packages of interventions have been decided at

the state level, with substantial variation between states in the extent to which measures have been

adopted, and their comparative timing [4]. Importantly, interventions employed to date remain short

of the widespread and mandatory lockdowns implemented across parts of Asia and Europe and which

have proved to be highly effective at containing spread of the virus [7, 19].
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Figure 1: Map of cases (a) and deaths (b) in Brazil by state level. Data source: Painel Coronavirus at

https://covid.saude.gov.br, accessed on 7th May 2020.

It remains unclear the extent to which these measures have been effective in reducing transmission

across the country. Reported cases across Brazil have more than doubled over the past 10 days and

show little sign of slowing. Given this rapid growth, a better understanding of the current epidemiologi-

cal situation and the impact of interventions deployed to date is required to guide policy decisions aimed

at preventing worsening of the public health emergency the country faces. Motivated by this, we ex-

tend a previously published semi-mechanistic Bayesian hierarchical model of COVID-19 epidemiological

dynamics [7, 19] to assess the impact of interventions aimed at curbing transmission of COVID-19 across

Brazil. In our framework we estimate the number of deaths, infections and transmission as a function

of patterns in human mobility. We utilise this framework to explore the epidemiological situation in

detail at the state level and understand the spread of the virus across the country to date. These results

include both estimates of the proportion of individuals infected so far as well as the impact of differ-

ent control interventions, and provide insight into possible future epidemic trajectories should further

control measures be employed, or current interventions relaxed.
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State IFR % Population Deaths Deaths per million Infections (thousands) Attack rate % Reproduction number

SP 0.7 46,289,333 3,045 65.80 1,530 [1,310, 1,700] 3.30 [2.83, 3.68] 1.47 [1.34, 1.59]

RJ 0.8 17,366,189 1,205 69.40 582 [492, 657] 3.35 [2.83, 3.78] 1.44 [1.28, 1.60]

CE 1.1 9,187,886 848 92.30 410 [343, 464] 4.46 [3.73, 5.05] 1.61 [1.42, 1.81]

PE 1.1 9,617,072 803 83.50 288 [239, 328] 3.00 [2.49, 3.41] 1.32 [1.14, 1.53]

AM 0.8 4,207,714 751 178 448 [372, 509] 10.60 [8.84, 12.10] 1.58 [1.38, 1.81]

PA 0.9 8,690,745 392 45.10 439 [339, 513] 5.05 [3.90, 5.90] 1.90 [1.57, 2.31]

MA 1.0 7,114,598 291 40.90 147 [118, 170] 2.07 [1.65, 2.40] 1.55 [1.32, 1.80]

BA 1.1 14,930,424 160 10.70 59.5 [46.5, 69.6] 0.40 [0.31, 0.47] 1.37 [1.14, 1.63]

ES 0.9 4,064,052 145 35.70 91 [69.4, 107] 2.24 [1.71, 2.64] 1.57 [1.29, 1.90]

PR 0.9 11,516,840 101 8.77 28.4 [21.6, 33.6] 0.25 [0.19, 0.29] 1.16 [0.95, 1.39]

MG 1.0 21,292,666 97 4.56 28.1 [21, 33.4] 0.13 [0.10, 0.16] 1.30 [1.05, 1.57]

PB 1.2 4,039,277 92 22.80 25.7 [19.4, 30.4] 0.64 [0.48, 0.75] 1.23 [0.97, 1.52]

AL 1.1 3,351,092 89 26.60 40.1 [29, 48.1] 1.20 [0.87, 1.44] 1.27 [0.94, 1.67]

RS 0.9 11,422,973 87 7.62 48.2 [36.3, 57.1] 0.42 [0.32, 0.50] 1.44 [1.15, 1.77]

RN 1.1 3,534,165 72 20.40 19.9 [14.7, 23.7] 0.56 [0.42, 0.67] 1.18 [0.92, 1.45]

SC 0.8 7,252,502 59 8.14 16.5 [12.2, 19.7] 0.23 [0.17, 0.27] 1.14 [0.91, 1.38]

Table 1: Estimated infection fatality ratio (IFR), state population, reported deaths and deaths per million

population, estimated number of infections in thousands, attack rate (AR), and time-varying reproduc-

tion number on 6 May 2020 with 95% credible intervals, for São Paulo (SP), Rio de Janeiro (RJ), Pernam-

buco (PE), Ceará (CE), Amazonas (AM), Pará (PA), Maranhão (MA), Bahia (BA), Espírito Santo (ES), Paraná

(PR), Minas Gerais (MG), Paraíba (PB), Rio Grande do Sul (RS), Rio Grande do Norte (RN), Alagoas (AL),

Santa Catarina (SC).
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3 Results
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Figure 2: Estimates of infections, deaths and Rt. Left: daily number of infections, brown bars are re-

ported cases, blue bands are predicted infections, dark blue 50% credible interval (CI), light blue 95% CI.

Middle: daily number of deaths, brown bars are reported deaths, blue bands are predicted deaths, CI

as in left plot. Right: time-varying reproduction numberRt, dark green 50%CI, light green 95%CI. If the

Rt is above 1, the number of infections continues to grow. Icons are interventions shown at the time

they occurred.
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3.1 Attack Rates

Brazil has already reported almost twice as many COVID-19 deaths than China and over 100,000 con-

firmed cases. But despite these high numbers, we estimate that only a small proportion of individuals

within each state has been infected to date (attack rate). The distribution of deaths among states is

highly heterogeneous, with 5 states—São Paulo, Rio de Janeiro, Ceará, Pernambuco and Amazonas—

accounting for 81% of reported deaths. In these states, we estimate that the percentage of people that

have been infected with SARS-CoV-2 ranges from 3.3% (95% CI: 2.8%-3.7%) in São Paulo to 10.6% (95%

CI: 8.8%-12.1%) in Amazonas. The remaining states all have attack rates below 2.3%, apart from Pará

(PA), which at 5.05% (CI95: 3.9%-5.9%), is lower only than Amazonas. The full list of attack rate estimates

for each state is shown in Table 1.

These results illustrate that the proportion of the population already infected and potentially immune

remains low. Considering an R0 of 3 and transmissibility similar to that observed across European[7]

and Brazilian[16] settings, the estimated share of the population infected to date remains far short of

the 70% herd immunity threshold required to prevent rapid resurgence of the virus if control measures

are relaxed. [7] and in Brazil.[16]).

3.2 Sensitivity Analysis - Infection Fatality Rate & Underreporting

Substantial uncertainty remains in our understanding of the fundamental epidemiology of COVID-19 and

the quality of surveillance systems across different settings. Consequently, estimates of the expected

number of deaths and infections are sensitive to assumptions made within our modelling framework.

In particular there is uncertainty surrounding the infection fatality ratio (IFR), which is the probability of

an individual dying if infected with SARS-CoV-2. If this number is very low, more infections and a higher

attack rate are to be expected for the same number of observed deaths, and vice versa. There is also

considerable uncertainty in the observed death data, as little is knownabout the extent and nature of un-

derreporting. In order to examine the effect of these assumptions on the conclusions described above,

we undertook a series of sensitivity analyses (see Appendix) exploring different assumptions surround-

ing state-level IFR (relating to assumptions about how healthcare quality varies with state income) and

the extent of death underreporting. The results of these sensitivity analysis, as expected, yield quantita-

tive differences in the predicted attack rates - for example, assuming a 50% level of death underreporting

changes our predicted attack rates from 3.30% (CI95: 2.83%-3.68%) and 10.60% (CI95: 8.84%-12.10%)

to 6.49% (CI95: 5.44%-7.35%) and 19.90% (CI95:16.40%-22.80%) for São Paulo and Amazonas respec-

tively. Similarly, assumptions surrounding the extent and variation of healthcare quality across states
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did not qualitatively alter the conclusions reached, namely that levels of infection in the population to

date are significantly lower than that required for herd immunity.

3.3 Effectiveness of Control Measures

Attempts to contain the spread of SARS-Cov-2 in the community have centred around the deployment

of various non-pharmaceutical interventions (NPIs) that involve reducing the number of contacts made

between individuals [6]. Common examples are school closures, social distancing rules, banning of pub-

lic gatherings and complete lockdown. Disrupting chains of transmission and bringing the reproduc-

tion number (Rt) below 1 is essential to control the virus and prevent exponential growth. Using our

framework, we estimate the time-varying effective reproduction number across all Brazilian states. We

parameterised Rt as a function of Google mobility data [2] - an implicit assumption within this frame-

work is that changes in mobility patterns can be related to changes in transmission intensity, which is

supported by previous research examining other respiratory viruses [18, 10].

We describe the time-varying effective reproduction numberRt for the 5 states with the current highest

number of deaths: São Paulo (SP), Rio de Janeiro (RJ), Pernambuco (PE), Ceará (CE), and Amazonas (AM)

(Figure 2). Estimates of the initial reproduction number (R0) are consistently in the range of 3 - 4 across

all states, in line with estimates of transmissibility derived from European data [7]. Our results also

show that Rt has dropped dramatically following the implementation of public health interventions,

with mobility declining by 29% on average across Brazil and Rt declining by 54% on average. However,

in none of the states we considered did our results suggest that measures implemented to date have

brought Rt below 1. By contrast, in previously published work examining Italy [19] where stringent

measures including societal lockdowns have been implemented,mobility had reduced by 53% compared

to baseline[2], reducing Rt by 85% compared to R0 and bringing it significantly below 1. These results

therefore suggest that, in the absence of additional major interventions, substantial further growth of

the epidemic is expected across all 16 Brazilian states considered, leading to worsening of the COVID-19

public health crisis.

Changes in the effective reproduction number reflect alterations to patterns of mobility and contact

stemming from both government-mandated interventions as well as changes in behaviour at the indi-

vidual level. Within our framework, we explore the comparative impact of reductions in different types

of mobility (in different settings, including the workplace, parks, residential and transit stations) on the

effective reproduction number (see Figure 3). Our results support broad equivalency in the effect of

reductions in different types of mobility and their corresponding impact on Rt (Figure 3). However,
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we note the large credible intervals associated with each estimate, which limits our ability to identify

differences.
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Figure 3: Effect sizes for mobility covariates inRt.

4 Conclusion

In this report we utilise a semi-mechanistic Bayesian model of COVID-19 transmission, calibrated using

data on reported deaths at the state level, to infer the epidemiological characteristics of the epidemic in

Brazil to date. The results presented here suggest an ongoing epidemic in which substantial reductions

in the average reproduction number have been achieved through non-pharmaceutical interventions.

However our results also show that so far the changes in mobility have not been stringent enough to

reduce the reproduction number below 1. Therefore we predict continued growth of the epidemic

across Brazil and increases in the associated number of cases and deaths unless further actions are

taken.

Our results reveal extensive heterogeneity in predicted attack rates between states, suggesting that the

epidemic is at a far more advanced stage in some states compared to others. Despite this heterogeneity

however, in no states do any of our results indicate that herd immunity is close to being reached, under-

scoring the early stage of the epidemic in Brazil currently, and the prospect of the situation worsening

unless further control measures are implemented. The estimated attack rates are calculated from the

reported number of deaths. We expect ascertainment of deaths to be higher than for cases, a phe-

nomenon attributable to the large proportion of infected individuals who typically present as asymp-
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tomatic e.g. [11]. Because of this extensive asymptomatic fraction and limitations surrounding popula-

tion testing currently, we expect our estimates to be more accurate than naive attack rates estimated

from the reported number of cases. Important to note however that estimating the extent to which

deaths are underreported remains very difficult and we therefore consider a number of different death

underreporting scenarios in our analyses. Although differences in these assumptions alter our quanti-

tative estimates of attack rate, they do not alter our qualitative conclusions surrounding the impact of

control interventions and the proportion of the population infected to date falling short of the threshold

required for herd immunity. We additionally consider the possibility that the extent of COVID-19 death

underreporting has been non-stationary over time - specifically, that increases in the ascertainment of

COVID-19 deaths over time during the initial phase of the epidemic could lead to upwards biasing of our

R0 estimates. To test the sensitivity of this bias inR0 we ran our model with a strong prior on a lowR0

but found that our conclusions regardingRt > 1 were unchanged.

Our results surrounding attack rates are also sensitive to assumptions about the state-specific infec-

tion fatality ratio (IFR) used, a quantity driven by a diversity of different factors including demographic

structure of the state’s population, the pattern of social contacts between age-groups, and the quali-

ty/quantity of available healthcare (such as supportive oxygen therapy andmechanical ventilation). Our

estimated IFRs for each of the Brazilian states range from 0.7% to 1.2%, reflecting substantial differences

between states in their demographic structure and healthcare provision. As an example, the population

of Amazonas is on average 7 years younger than São Paulo. Using previously published estimates of

mortality risk [17], this difference would lead to naive estimates of the IFR that are lower in Amazonas

compared to São Paulo (0.38% and 0.70% respectively. However, these previous studies assume a level

of healthcare similar to that of China, accounting for the poorer health outcomes we expect in Brazil’s

least affluent states produces IFR estimates of 0.70% for São Paulo and 0.72% Amazonas. Whilst es-

timates of these IFRs will ultimately be sensitive to considerations of how healthcare quality shapes

patterns of mortality, the presented results are robust to assumptions surrounding the extent of vari-

ation in healthcare quality (see Appendix). We would also note that across all states considered and

across all scenarios, the IFR we predict is substantially higher than the value of 0.1% used in the recent

work by Galluci-Neto and colleagues [5].

The semi-mechanistic Bayesian framework utilised also allowsquantificationof the impact of non-pharmaceutical

interventions on the reproduction number, Rt. Our results suggest substantial reductions in the esti-

mated value of Rt across all states following introduction of these interventions. This is predicated on

the assumption that reductions in transmission can be accurately ascertained from reductions in mo-

bility. Such an assumption has been borne out in previous work looking at the impact of reductions in
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mobility on transmission of the virus during the Chinese epidemic [1]. However, it is important to note

that the relationship linking mobility and transmission will likely be highly dynamic over the course of an

epidemic, being modified by other factors such as behavioural changes surrounding physical distancing

and routine mask wearing. .

Our results suggests that, despite reductions, these measures have only been partially successful in re-

ducing transmission - across all states considered here, the value ofRt remains above 1, indicating that

transmission remains uncontrolled and that in the absence of stricter measures leading to further re-

ductions in mobility, that growth of the epidemic will continue. This is in contrast to European settings

where societal lockdowns have been implemented, leading to estimated reductions inRt below 1 [19].

Such reductions have been associated with substantial reductions in patterns of mobility - in countries

such as Italy where a strict lockdown was mandated, mobility declined to far greater extent than has

been observed to date in Brazil. For instance, patterns of mobility surrounding grocery/pharmacy in

Lombardy, one of the most severely affected regions in Italy, dropped by almost 75% over when mea-

sures were introduced (yielding an estimated Rt of 0.58). By contrast, across Amazonas and São Paulo

to date, the maximum observed reduction has only been 18% and 21% respectively, producing Rt es-

timates of 1.58 and 1.46 respectively. Overall whilst our work suggests that implemented measures to

date have had an impact on transmission, they also highlight their insufficiency if transmission is to be

controlled, and the need for further contact-limiting measures, beyond what is currently implemented,

to reduce the reproduction number in Brazil to less than 1.

Overall, our results reveal that despite extensive spread and transmission of the virus across the country,

the extent of infection in the general population remains low and far short of the level required for herd

immunity. This result is robust to assumptions surrounding the IFR associated with each state, and the

extent of underreporting we assume in the available deaths data. More broadly, our results suggest that

in the absence of the introduction of further control measures that will more strongly curb transmission,

Brazil faces the prospect of an epidemic that will continue to grow exponentially.
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Figure 4: Mobility covariates from Google mobility reports for São Paulo (SP), Rio de Janeiro (RJ), Per-

nambuco (PE), Ceará (CE), Amazonas (AM).

6 Appendix

6.1 Model

We adopt the Bayesian semi-mechanistic model from [7] to estimate transmission intensity and attack

rates of COVID-19 conditional on the reported number of deaths. The code base for our work can be

found at https://github.com/ImperialCollegeLondon/covid19model. For the Brazilian model

at state level, four covariates related to Google mobility were included. These describe the reduction or

increase in mobility in residential areas (k = 1), transit stations (k = 2), parks (k = 3) and the average

between groceries and pharmacies, retail and recreational areas and workplaces (k = 4), which are

averaged due to collinearity.

As adopted in the recent published report, a subnational analysis for Italy [19], the time-varying repro-

duction number Rt is modelled as function of Google mobility data. Parameters are jointly estimated

for 16 Brazilian states to evaluate if interventions taken so far were able to reduceRt below to 1. Partial

and full pooling were adopted, but produced almost identical results.

Denote Ik,t,m as the k-th Google mobility indicator, at time t for Brazilian state m. The time-varying

reproduction number for Brazilian statem,Rt,m, is modeled by:

Rt,m = R0,m

2λ−1(−
4∑

k=1

(αk + βm,k)Ik,t,m)


whereλ−1 denotes the logistic function,αk the effects shared betweenM states andβm,k state-specific

DOI: https://doi.org/10.25561/78872 Page 11 of 24

https://github.com/ImperialCollegeLondon/covid19model


8thMay 2020 Imperial College COVID-19 Response Team

effects. Prior distributions for the partial pooling model were set as

αk ∼ N (0, 0.5)

βm,k ∼ N (0, γ), with γ ∼ N (0, 0.5),

while the prior distribution forR0,m was chosen to be

R0,m ∼ N (3.28, |κ|)

κ ∼ N (0, 0.5)

with κ being the same among all states to share information about the variability ofR0,m. The value of

3.28 was already used in [7, 19] based on [12].

6.2 Death underreporting scenarios

In this work, an extension of the semi-mechanistic Bayesian hierarchical model from [7] is adopted to

reflect the uncertainty about underreported deaths. We address the effect of underreporting in the

data set by setting a prior distribution to death underreporting ψ ∼ beta(θ, ρ). The hyperparameters of

the beta density are fixed in order to reflect in the mode the desired underreporting rate, see Figure 5.

As in the original model [7], daily deaths Dt,m are observed for days t ∈ {1, . . . , n} and Brazilian

statesm ∈ {1, . . . ,M}. These daily deaths are modelled using a positive real-valued function dt,m =

E[Dt,mψ] that represents the expected number of deaths attributed to COVID-19, taking into account

the designated underreported rate ψ. Daily deaths Dt,m are assumed to follow a negative binomial

distribution with mean dt,m and variance dt,m +
d2t,m
φ , where φ follows a normal distribution, i.e.

Dt,m ∼ Negative Binomial

(
dt,m, dt,m +

d2t,m
φ

)
,

φ ∼ N (0, 5)

in whichN (µ, σ) denotes a normal distribution with mean µ and standard deviation σ. The rest of the

mathematical model follows the original manuscript [7] introducing the new feature of underreporting

death rate ψ on daily deaths.

The effect of death underreporting on the attack rate is shown in Table 2 for three additional scenarios:

33% and 50% and 67% underreporting. The underreporting scenarios are implemented by scaling re-

ported death data by beta distributionswithmeans (0.67, 0.5, 0.33) and in each instance variance 0.004.

The distributions are shown in Figure 5.
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State 0% underreporting 33% underreporting 50% underreporting 67% underreporting

SP 3.30 [2.83, 3.68] 4.90 [4.13, 5.52] 6.49 [5.44, 7.35] 9.58 [7.74, 11.00]

RJ 3.35 [2.83, 3.78] 5.05 [4.19, 5.74] 6.75 [5.50, 7.74] 10.20 [8.09, 11.90]

CE 4.46 [3.73, 5.05] 6.66 [5.46, 7.61] 8.76 [7.14, 10.10] 12.90 [10.30, 14.90]

PE 3.00 [2.49, 3.41] 4.50 [3.67, 5.15] 5.94 [4.79, 6.84] 8.86 [6.93, 10.30]

AM 10.60 [8.84, 12.10] 15.40 [12.80, 17.60] 19.90 [16.40, 22.80] 27.70 [22.80, 31.80]

PA 5.05 [3.90, 5.90] 7.63 [5.83, 8.95] 9.95 [7.50, 11.80] 14.90 [11.10, 17.70]

MA 2.07 [1.65, 2.40] 3.12 [2.44, 3.63] 4.15 [3.24, 4.83] 6.23 [4.71, 7.37]

BA 0.40 [0.31, 0.47] 0.61 [0.47, 0.71] 0.81 [0.62, 0.95] 1.26 [0.93, 1.49]

ES 2.24 [1.71, 2.64] 3.36 [2.52, 3.99] 4.45 [3.34, 5.25] 6.69 [4.82, 8.04]

PR 0.25 [0.19, 0.29] 0.37 [0.28, 0.44] 0.50 [0.37, 0.59] 0.74 [0.53, 0.89]

MG 0.13 [0.10, 0.16] 0.20 [0.15, 0.24] 0.27 [0.19, 0.33] 0.41 [0.29, 0.49]

PB 0.64 [0.48, 0.75] 0.97 [0.72, 1.15] 1.31 [0.96, 1.56] 1.98 [1.41, 2.39]

AL 1.20 [0.87, 1.44] 1.81 [1.27, 2.18] 2.41 [1.70, 2.89] 3.66 [2.51, 4.42]

RS 0.42 [0.32, 0.50] 0.65 [0.48, 0.77] 0.87 [0.64, 1.05] 1.35 [0.95, 1.62]

RN 0.56 [0.42, 0.67] 0.85 [0.62, 1.02] 1.16 [0.83, 1.39] 1.77 [1.23, 2.14]

SC 0.23 [0.17, 0.27] 0.34 [0.25, 0.41] 0.46 [0.33, 0.55] 0.69 [0.48, 0.84]

Table 2: Estimated attack rates for 0%, 33%, 50% and 67% death underreporting scenarios.

0.0 0.2 0.4 0.6 0.8 1.0
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1
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6
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P
D
F 33% under-reporting: β(36,18)
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67% under-reporting: β(18.2,36.4)

Figure 5: Underreporting prior distributions.

6.3 Cases and Rt for 16 states

The estimated cases, deaths and Rt for all 16 states considered in our joint model, São Paulo (SP), Rio

de Janeiro (RJ), Pernambuco (PE), Ceará (CE), Amazonas (AM), Pará (PA), Maranhão (MA), Bahia (BA),

Espírito Santo (ES), Paraná (PR), Minas Gerais (MG), Paraíba (PB), Rio Grande do Sul (RS), Rio Grande do

Norte (RN), Alagoas (AL), Santa Catarina (SC), are shown in Figure 6.
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Figure 6: Estimates of infections, deaths andRt for all 16 states considered in the model.
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6.4 Full and partial-pooling sensitivity

The results in this work have been produced with partial pooling of covariate coefficients. Full pooling

results are shown in Table 3. There is no substantial difference.

State AR% half pooling AR% full pooling

SP 3.30 [2.83, 3.68] 3.32 [2.86, 3.69]

RJ 3.35 [2.83, 3.78] 3.33 [2.81, 3.74]

CE 4.46 [3.73, 5.05] 4.31 [3.62, 4.88]

PE 3.00 [2.49, 3.41] 3.00 [2.51, 3.41]

AM 10.60 [8.84, 12.10] 10.60 [8.94, 12.00]

PA 5.05 [3.90, 5.90] 4.67 [3.72, 5.41]

MA 2.07 [1.65, 2.40] 2.07 [1.65, 2.40]

BA 0.40 [0.31, 0.47] 0.39 [0.31, 0.45]

ES 2.24 [1.71, 2.64] 2.17 [1.69, 2.55]

PR 0.25 [0.19, 0.29] 0.24 [0.18, 0.29]

MG 0.13 [0.10, 0.16] 0.13 [0.10, 0.15]

PB 0.64 [0.48, 0.75] 0.65 [0.49, 0.77]

AL 1.20 [0.87, 1.44] 1.15 [0.86, 1.37]

RS 0.42 [0.32, 0.50] 0.42 [0.32, 0.50]

RN 0.56 [0.42, 0.67] 0.57 [0.43, 0.68]

SC 0.23 [0.17, 0.27] 0.23 [0.17, 0.28]

Table 3: Attack rate (AR) by state, with half and full-pooling of mobility covariates between states.

6.5 Onset-to-death sensitivity

Onset-to-death distribution sensitivity analysis for attack rate is shown in Table 4. Outcomes are not

substantially affected by perturbation of onset-to-death distribution mean by plus or minus 10%.

6.6 IFR Calculation and Sensitivity Analysis

Estimates of the expected IFR across different states are derived from previously published estimates of

mixing patterns in a Latin America setting [3] alongside estimates of the virus’ transmissibility (the ba-

sic reproduction number, R0) derived from European settings [7] and from estimates of disease sever-
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State AR% onset-to-death mean decreased by 10% AR% onset-to-death mean increased by 10%

SP 3.15 [2.72, 3.51] 3.38 [2.88, 3.79]

RJ 3.17 [2.68, 3.58] 3.54 [2.96, 4.01]

CE 4.04 [3.38, 4.57] 4.96 [4.10, 5.66]

PE 2.77 [2.32, 3.13] 3.21 [2.65, 3.65]

AM 9.80 [8.22, 11.10] 11.50 [9.56, 13.10]

PA 4.38 [3.38, 5.12] 5.91 [4.51, 6.97]

MA 1.86 [1.50, 2.14] 2.29 [1.80, 2.67]

BA 0.36 [0.29, 0.42] 0.44 [0.34, 0.51]

ES 1.98 [1.52, 2.32] 2.51 [1.88, 2.98]

PR 0.24 [0.19, 0.28] 0.25 [0.19, 0.30]

MG 0.13 [0.09, 0.15] 0.14 [0.10, 0.17]

PB 0.60 [0.46, 0.70] 0.68 [0.50, 0.81]

AL 1.09 [0.79, 1.29] 1.32 [0.94, 1.59]

RS 0.37 [0.28, 0.44] 0.48 [0.35, 0.57]

RN 0.53 [0.39, 0.63] 0.59 [0.43, 0.71]

SC 0.22 [0.17, 0.26] 0.23 [0.17, 0.28]

Table 4: Attack rate (AR) with onset-to-death distribution mean decreased by 10% to 16.9 days and

increased by 10% to 20.7 days.

ity derived from the Chinese epidemic [15] and subsequently modified to match data emerging from

the epidemic in the United Kingdom [7]. We additionally modified these estimates of disease severity

(specifically the Infection Fatality Ratio or IFR) to account for the substantial heterogeneity we expect to

observe in health outcomes across states due to variation in healthcare quality and capacity, the details

of which are described below.

Across the states considered in this analysis, average income varies from as high as∼ $300 in São Paulo

to as low as∼ $100 in Maranhão.[8] Such disparities in income are likely to result in significant dispari-

ties in the quality and extent of available healthcare. Motivated by this, we modified the state-specific

IFRs used in an income-dependent manner. Specifically, we assumed that the state with the highest in-

come (São Paulo) has a quality of care identical to that observed in China (and thus motivated using the

estimates presented in Verity et al.[15]), and that the state with the lowest income (Maranhnão) had sig-

nificantly worse healthcare outcomes - more similar to those that would be expected in a Lower Middle

Income Country (seeWalker et al., [20] for further details on how differences in health quality across set-
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tings are likely to impact outcomes). Details on the age-specific infection fatality probabilities for these

two states are provided in Table 5. For the other states where income lies somewhere between that of

Maranhão and São Paulo, we linearly interpolate the age-specific infection fatality probabilities based

on state-level average income.[8] These age-specific infection fatality probabilities are then combined

with predictions of the age-distribution of infections to produce an overall, state-specific IFR.

Ages IFR% São Paulo IFR% Maranhão

0-4 0.0028 0.021

5-9 0.0024 0.018

10-14 0.0044 0.033

15-19 0.0091 0.067

20-24 0.020 0.15

25-29 0.039 0.29

30-34 0.062 0.45

35-39 0.094 0.66

40-44 0.13 0.82

45-49 0.22 1.13

50-54 0.45 1.77

55-59 0.82 2.38

60-64 1.72 3.70

65-70 2.71 4.73

75-80 4.25 6.47

80-84 6.15 8.47

85+ 9.63 12.57

Table 5: IFR by age for São Paulo and Maranhão.

Substantial uncertainty still remains in these IFR calculations however, and motivated by this we carried

out a sensitivity analysis exploring the impacts of different choices of mixing matrix (Peru vs the United

Kingdom) and of assumptions surrounding healthcare quality (namely the method described above or

assuming that all states are able to provide a level of healthcare equal to that seen during the Chinese

epidemic). The results of these sensitivity analyses are shown in Table 6 for different IFRs. Although as-

sumptions surrounding healthcare quality impact the quantitative predictions of the IFR and associated

predicted attack rates, they do not qualitatively change our conclusions surrounding herd immunity and

the lack of infections to date sufficient to have reached it.
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State (i) AR% UK contact

matrix

(ii) AR% Peru contact

matrix

(iii) AR% UK contact

matrix, poorer out-

comes

(iv) AR% Peru con-

tact matrix, poorer

outcomes

SP 3.42 [2.93, 3.82] 3.28 [2.82,3.67] 3.41 [2.93, 3.80] 3.30 [2.83, 3.68]

RJ 3.67 [3.08, 4.13] 3.52 [2.96,3.98] 3.49 [2.92, 3.94] 3.35 [2.83, 3.78]

CE 8.17 [6.86, 9.24] 7.83 [6.58,8.85] 4.55 [3.79, 5.15] 4.46 [3.73, 5.05]

PE 5.53 [4.61, 6.28] 5.31 [4.43,6.03] 3.04 [2.52, 3.45] 3.00 [2.49, 3.41]

AM 21.00 [17.90,23.70] 20.70 [17.60,23.40] 10.60 [8.85, 12.00] 10.60 [8.84, 12.10]

PA 10.40 [8.13, 12.20] 10.30 [8.02,11.90] 5.06 [3.90, 5.94] 5.05 [3.90, 5.90]

MA 4.53 [3.60, 5.24] 4.39 [3.51,5.08] 2.08 [1.65, 2.41] 2.07 [1.65, 2.40]

BA 0.76 [0.59, 0.89] 0.73 [0.57,0.85] 0.40 [0.32, 0.47] 0.40 [0.31, 0.47]

ES 3.14 [2.39, 3.71] 3.04 [2.32,3.58] 2.27 [1.72, 2.67] 2.24 [1.71, 2.64]

PR 0.32 [0.24, 0.37] 0.30 [0.23,0.36] 0.25 [0.19, 0.30] 0.25 [0.19, 0.29]

MG 0.20 [0.15, 0.23] 0.19 [0.14,0.23] 0.14 [0.10, 0.16] 0.13 [0.10, 0.16]

PB 1.21 [0.91, 1.44] 1.14 [0.86,1.36] 0.65 [0.49, 0.77] 0.64 [0.48, 0.75]

AL 2.61 [1.89, 3.12] 2.52 [1.82,3.01] 1.21 [0.87, 1.45] 1.20 [0.87, 1.44]

RS 0.47 [0.36, 0.56] 0.45 [0.34,0.54] 0.44 [0.33, 0.52] 0.42 [0.32, 0.50]

RN 1.01 [0.75, 1.20] 0.96 [0.71,1.16] 0.57 [0.42, 0.68] 0.56 [0.42, 0.67]

SC 0.27 [0.20, 0.32] 0.26 [0.19,0.31] 0.23 [0.17, 0.28] 0.23 [0.17, 0.27]

Table 6: Attack rates % (AR) estimated using different infection fatality ratios (IFR) with Brazilian state-

level population weighting and using: i) UK contact matrix, ii) Peru contact matrix, iii) UK contact matrix

with poorer hospitalisation outcomes, iv) Peru contact matrix with poorer hospitalisation outcomes.
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State (i) IFR UK contact

matrix

(ii) IFR Peru contact

matrix

(iii) IFR UK contact

matrix, poorer out-

comes

(iv) IFR Peru contact

matrix, poorer out-

comes

AC 0.38 0.39 0.78 0.78

AL 0.51 0.53 1.06 1.07

AM 0.37 0.38 0.79 0.79

AP 0.34 0.35 0.73 0.73

BA 0.59 0.62 1.10 1.12

CE 0.58 0.61 1.07 1.09

ES 0.63 0.65 0.87 0.89

MA 0.48 0.50 1.03 1.04

MG 0.69 0.72 1.01 1.04

PA 0.42 0.43 0.89 0.89

PB 0.62 0.65 1.13 1.16

PE 0.58 0.60 1.06 1.07

PI 0.57 0.59 1.10 1.11

PR 0.66 0.69 0.84 0.86

RJ 0.73 0.76 0.76 0.79

RN 0.60 0.62 1.04 1.06

RO 0.45 0.45 0.81 0.81

RR 0.33 0.34 0.67 0.67

RS 0.78 0.81 0.84 0.87

SC 0.65 0.67 0.74 0.76

SE 0.51 0.53 0.96 0.97

SP 0.67 0.70 0.67 0.70

TO 0.49 0.51 0.89 0.90

Table 7: Infection fatality ratios (IFR) with Brazilian state-level populationweighting„ using: i) UK contact

matrix, ii) Peru contact matrix, iii) UK contact matrix with poorer hospitalisation outcomes, iv) Peru

contact matrix with poorer hospitalisation outcomes.
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6.7 Data

As input of deaths and reported cases, ourmodel uses daily updates froma government initiative funded

by Brazil’s ministry of Health called Painel Coronavírus, available at https://covid.saude.gov.br.

In this data the number of deaths attributable to COVID-19 is segmented by state level. Possible under-

reporting in death data is addressed in the mathematical model described in Section 6.1.

For population countsweused the 2020projectionby state publishedby Instituto Brasileiro deGeografia

e Estatística (IBGE).[9]

Mobility report data from Google (https://www.google.com/covid19/mobility/) were used to

estimate the effects of different interventions over time. The report provides the estimated percentage

of change onmovements of places such as retail and recreation, groceries and pharmacies, parks, transit

stations, workplaces, and residential comparing to a baseline. Such baseline corresponds to the median

value of each day of the week, using data of January 3rd to February 6th, 2020. More details can be

found in Figure 7.

Regarding intervention data, the values taken into account are the dates in which interventions were

effectively applied, even though they were encouraged at earlier dates.
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Figure 7: Googlemobility time series for all Brazilian states with their respective interventions from 15th

February to 26th April 2020.
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State Emergency declared Retail and services closed Transportation restricted Schools closed

AC 2020-03-20 2020-03-20 2020-03-20 2020-03-20

AL 2020-03-20 2020-03-21 2020-03-19 2020-03-23

AM 2020-03-16 2020-03-23 2020-03-23 2020-03-19

AP 2020-03-20 2020-03-23 2020-03-23 2020-03-17

BA 2020-03-19 2020-03-19 2020-03-20 2020-03-19

CE 2020-03-19 2020-03-19 2020-03-19 2020-03-19

DF 2020-02-28 2020-03-23 2020-03-18 2020-03-11

ES 2020-03-16 2020-03-20 2020-03-23 2020-03-17

GO 2020-03-13 2020-03-24 2020-03-24 2020-03-16

MA 2020-03-19 2020-03-23 2020-03-23 2020-03-17

MG 2020-03-12 2020-03-23 2020-03-23 2020-03-18

MS 2020-03-19 2020-03-19 2020-03-25 2020-03-24

MT 2020-03-23 2020-03-23 2020-03-18 2020-03-23

PA 2020-03-20 2020-03-20 2020-03-23 2020-03-17

PB 2020-03-21 2020-03-21 2020-03-19 2020-03-17

PE 2020-03-21 2020-03-14 2020-03-21 2020-03-18

PI 2020-03-19 2020-03-23 2020-03-23 2020-03-16

PR 2020-03-19 2020-03-23 2020-03-20 2020-03-18

RJ 2020-03-16 2020-03-20 2020-03-13 2020-03-20

RN 2020-03-20 2020-03-21 2020-03-21 2020-03-18

RO 2020-03-20 2020-03-21 2020-03-17

RR 2020-03-23 2020-03-23 2020-02-20 2020-03-20

RS 2020-03-19 2020-03-19 2020-03-20 2020-03-19

SC 2020-03-17 2020-03-18 2020-03-18 2020-03-19

SE 2020-03-16 2020-03-20 2020-03-20 2020-03-16

SP 2020-03-20 2020-03-22 2020-03-22 2020-03-21

TO 2020-03-21 2020-03-21 2020-03-21 2020-03-16

Table 8: Non-pharmaceutical interventions by state, adapted from [4].
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